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Abstract 

 Kinematic and Dynamic Analysis of an airplane’s landing gear is detailed. With 90,000 

planes in the air at any given time perhaps the most crucial element for a safe return is the 

airplane lading equipment. This analysis is modeled on a one degree-of-freedom with one motor 

input. Complete position, velocity and acceleration analysis can be detailed for the gears entire 

range of motion, including a snapshot of a point of interest. The dynamic analysis details the 

input torque and the shaking force and moment acting on the ground link. 
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1 Introduction 

 A full kinematic and dynamic study of airplane landing gear will be detailed. This 

includes position, velocity and acceleration analysis of the full range of motion of the landing 

gear system. 

2 Background 

Airplane landing gear, much like the airplanes that they find themselves on are not 

entirely alike and can be quite complex. This model will be representing a very simple four bar 

model to simulate the motion of the ascension and retraction of the landing gear system. A real-

life version of an example of this kind of airplane landing gear is shown in Figure 1. 

 

 

Figure 1 Real World Landing Gear Mechanism 
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3 Kinematic Diagram 

 A kinematic diagram is essential to describing how this mechanism will move. In Figure 

2 the linkage lengths are denoted by 𝑟𝑖 and the angle between the x axis and the lengths by 𝜃𝑖. 

The angular velocities are denoted by an 𝜔𝑖 and the angular acceleration is described by 𝛼𝑖.  

 

 

 

 

 

 

 

 

Figure 2: Kinematic Diagram 

 

 

To begin our analysis, we will need to quantify the input values for position, velocity and 

acceleration. These values can be found listed in Table 1.  

 

 

 

 

Table 1: Table of Input Values 

Input Information Symbol Value 

Link Number 1 𝑟1 32 in. 

Link Number 2 𝑟2 12 in. 

Link Number 3 𝑟3 30 in. 

Link Number 4 𝑟4 26 in. 

Input Angle (Snapshot) 𝜃2 315 degrees 

Input Velocity (Snapshot) 𝜔2   0.824 rad/s 

Input Acceleration (Snapshot) 𝛼2 -0.2303 rad/s^2 
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3.1 Mobility and Degrees of Freedom 

 The degrees-of-freedom (dof) of a device describes the number of ways that it can move. From 

our understanding of the landing gear mechanism, a dof of 1 is desired. This is implied by the name, as a 

mechanism is a device that has one and only one degree-of-freedom. We can ensure that this is in fact 

the case by using Kutzbach’s Mobility Equation (EQ 1) for Planar Jointed Devices to confirm the dof.  

𝑀 = 3(𝑁 − 1) −  2 ∗ 𝐽1 − 𝐽2 (𝐸𝑄. 1) 

 In this Mobility Equation we have several variables to define. N will be the number of links and 

will include the ground link. The number of one dof joints will be 𝐽1 (ex. revolute or prismatic joints) and 

the number of two dof joints (ex. Cam or gear joints) will be  𝐽2. 

 The landing gear mechanism that is being analyzed will have a total number of links of 4. 

Additionally, the mechanism will be entire comprised of 4 revolute joints or 𝐽1. It can be proven that the 

mobility will be 1, just as we were expecting.  

𝑀 = 3(4 − 1) −  2 ∗ 4 − 0 = 1 

3.2 Grashof Analysis 

 Some four bar mechanisms are somewhat unique in that we can predict the nature of the 

rotation of the input and output links using the ground link location and the length of the links. When 

analyzed two outcomes can be determined: a link can be considered a crank which has full rotatability 

or a rocker that will have a limited range of rotatability. 

 To determine whether our landing gear can be considered a Grashof Mechanism, we will need 

understanding of Grashof’s Law. Begin by considering the longest link as L, the shortest link as S, and the 

two-intermediate links as P and Q. To qualify as a Grashof Mechanism, 𝐿 + 𝑆 < 𝑃 + 𝑄.  

 

𝑊𝑒 ℎ𝑎𝑣𝑒: 32 + 12 < 30 + 26  

 

 Now that we have qualified as a Grashof Mechanism, we can begin to investigate the kinematic 

inversion that fits our mechanism. We know that our shortest link S, is going to be adjacent to the 

ground link for in mechanism. According to Grashof, we can expect to have an input of a crank and an 

output of a rocker.  
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3.3 Limits of Landing Gear 

 While it is possible to have an output of a crank-rocker, we cannot expect this in our real-life 

mechanism. When the landing gear is lowered, the wheels will need to make a 90-degree contact with 

the ground to safely support the weight of the aircraft. Inversely, when the gear is raised it will need to 

be tucked into the airplane to give better performance and fuel economy. Therefore, we can consider 

the limits of the input angle as shown in our kinematic diagram in Section 3 as  360 >  𝜃 > 236.09. 

 

3.4 Position, Velocity and Acceleration Inputs 

 When we look at a snapshot of this mechanism and analyze the kinematics, we want to be sure 

that the inputs we choose are meaningful. The position input represented here by 𝜃2, is limited due to 

factors described in Section 3.3. It can be assumed that the kinematics at the halfway point between the 

fully extended and the fully retracted will be a point experiencing a unique velocity and acceleration. For 

this position we will consider 𝜃2 = 315°. 

 The input velocity will also need to be estimated. We estimate that a typical landing gear system 

will take about 5 seconds to retract and will travel 26 inches in our mechanism as shown in the 

kinematic diagram in Figure 1. Given a cycloidal input for the rotational acceleration, the input now is  

𝜔2 = 0.824 
𝑟𝑎𝑑

𝑠
. 

 Finally, we can expect this mechanism to have an acceleration as it ascends and retracts. 

Following the same cycloidal function, we can expect 𝛼2 = −0.2303
𝑟𝑎𝑑

𝑠2
. 

  



Page 9 of 57 
 

4 Kinematic Analysis 

4.1 Position Analysis 

 When we begin our position analysis of this mechanism, we will need to begin by defining our 

givens and our desired values. These values are summarized in Table 2.  

 

 

 

 

 

We can then derive our Vector Loop Diagram shown in Figure 3 and the Vector Loop Eq (VLE) in 

Equation 2.   

 

 

Figure 3: Vector Loop Diagram 

 

𝑉𝑒𝑐𝑡𝑜𝑟 𝐿𝑜𝑜𝑝 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑟2 + 𝑟3 = 𝑟1 + 𝑟4 (EQ 2) 

 

 The derivation of  𝜃4 can be found in appendix A and the resulting Equation 4 is shown 

reproduced below. We can plug our given values into G, F, and E from Table 2 and solve for 𝑡 from 

equation 3.  

𝐸 = 2𝑟4(−𝑟1𝑐1 − 𝑟2𝑐2) = 2 ∗ 26(−32 ∗ cos0
° − 12 ∗ cos 315°) = −2105.23 

𝐹 = 2𝑟4(𝑟1𝑠1 − 𝑟2𝑠2) =  2 ∗ 26(32 ∗ sin0
° − 12 ∗ sin 315°) = 441.23 

𝐺 = 𝑟1
2 + 𝑟4

2 + 𝑟2
2 − 𝑟3

2 + 2𝑟1𝑟2 cos(𝜃1 + 𝜃2)

=  322 + 262 + 122 − 302 + (2 ∗ 32 ∗ 12 ∗ cos(0° + 315°) =  1487.06 

Table 2: Position Given and Desired Values 

Given  𝑟1, 𝑟2 , 𝑟3, 𝑟4, 𝜃1 , 𝜃2 

Find 𝜃3, 𝜃4 
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We will only look at the positive open branch, therefore only 1 t. 

𝑡1 =
−𝐹 ± √𝐹2 − 𝐺2 + 𝐸2

(G − E)
=
−441.23 − √441.232 − 1487.062 + (−2105.23)2

(1487.06 − (−2105.23))
= −0.555 

 

Now we can plug in for 𝜃4: 

𝜃4 = 2 tan
−1(𝑡) = 2 tan−1(−0.555) = −58.1° = 301.9°  

 

We can now use equation # to solve for 𝜃3: 

𝜃3 = tan
−1
−𝑟1𝑠1 − 𝑟4𝑠4 + 𝑟2𝑠2
−𝑟1𝑐1 + 𝑟4𝑐4 − 𝑟2𝑠2

= tan−1
−32∗ sin(0°) − 26∗ sin(−58.1°) + 12 ∗ sin(315°)

−32∗ cos(0°) − 26 ∗ cos(−58.1°) − 12 ∗ cos(315°)
 

 

𝜃3 = −26.92
° 
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4.1.1 Graphic Solution 

 A graphic solution of the derived solutions from section 4.1 can be shown. The solution detailing 

this landing gear mechanism can be found in Figure 4. 

 

Figure 4: Graphical Solution Representation of the Landing Gear Mechanism 

 

4.1.2 Using MATLAB to Show a Point of Interest  

 It can be considered that the most import point on this mechanism as the connection point 

between the traditional four bar mechanism and the wheel. This point can be found at the intersection 

of the 𝑟3 and 𝑟4. If this point is defined the MATLAB code and just how this point will move over time is 

shown. Figure 6 shows this result using the MATLAB Code in Appendix E. 
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Figure 6: Point of interest displacement in X & Y. 

  

4.2 Velocity Analysis 

 Much like the position analysis, we will start again by defining our givens and our desired values. 

These values for velocity are summarized in Table 3. 

 

 

 

 

 

Using the derivation from Appendix B, we can label our constants and solve for 𝜔4 from equation 5. 

𝑎 = 𝑟3𝑠3 = 30sin(−26.9°) = −13.6      𝑏 = 𝑟4𝑠4 = 26sin(301.9
°) = −22.07 

𝑑 = −𝑟3𝑐3 = 30cos(−26.9
°) = −26.75      𝑒 = 𝑟4𝑐4 = 26 cos(301.9

°) = 13.74 

𝑐 = 𝑟2𝜔2𝑠2 = 12 ∗ 0.824 ∗ sin(315
°) = −6.992    𝑓 = 𝑟2𝜔2𝑐2 = 12 ∗ 0.824 ∗ cos(315

°) = 6.992 

 

𝜔4 =
𝑎𝑓 − 𝑑𝑐

𝑎𝑒 − 𝑑𝑏
=
(−13.6)(6.992) − (−26.75)(−6.992)

(−13.6)(13.74) − (−26.75)(−22.07)
= 0.363 

 

 Now we can solve for 𝜔3 using equation 6. 

Table 3: Velocity Analysis Given and Desired Values 

Given  𝑟1, 𝑟2 , 𝑟3, 𝑟4, 𝜃1, 𝜃2, 𝜃3, 𝜃4;  𝜔2 

Find 𝜔3, 𝜔4 
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𝜔3 =
𝑐𝑒 − 𝑏𝑓

𝑎𝑒 − 𝑑𝑏
=
(−6.992)(13.74) − (−22.07)(6.992)

(−13.6)(13.74) − (−26.75)(−22.07)
= −0.0749 

 

 

4.3 Acceleration Analysis 

 As with both the Position and Velocity Equations, the givens and desired values can be 

found in Table 4.  

 

 

 

 

 

Now using the derivation from Appendix C, we can label our constants and solve for 𝛼4 from equation 6. 

𝑎 = 𝑟3𝑠3 = 30 ∗ sin(−26.3
°) =  −13.6     𝑏 = 𝑟4𝑠4 = 26 ∗ sin(301.9

°) = −22.07 

𝑑 = −𝑟3𝑐3 = −30∗ cos(−26.3
°) = −26.75      𝑒 = 𝑟4𝑐4 = 26 cos ∗(301.9

°) = 13.74 

𝑐 = 𝑟2𝛼2𝑠2 + 𝑟2𝜔2
2𝑐2 − 𝑟3𝜔3

2𝑐3 − 𝑟4𝜔4
2𝑐4

= 12 ∗ (−0.2303) ∗ sin(−26.3°) + 12 ∗ (0.824042) ∗ cos(315°) + 30

∗ (−0.0752) cos(−26.3°) +26 ∗ (−0.3632) cos(301.9°) = 5.7543 

𝑓 = 𝑟2𝛼2𝑐2 − 𝑟2𝜔2
2𝑠2 − 𝑟3𝜔3

2𝑠3 + 𝑟4𝜔4
2𝑠4

= 12 ∗ (−0.2303) cos(315°) − 12 ∗ (0.824042) sin(315°) + 30

∗ (−0.0752) sin(−26.3°) −26 ∗ (−0.3632) sin(301.9°) = 0.9739 

 

𝛼4 =
𝑎𝑓 − 𝑑𝑐

𝑎𝑒 − 𝑏𝑑
=
(−22.07 ∗ 0.9739) − (−26.75 ∗ 5.7543)

(−13.6 ∗ 13.74) − (−22.07 ∗ −26.75)
= −0.181 

 

And now we can solve for 𝛼3 with equation 7: 

𝛼3 =
𝑐𝑒 − 𝑏𝑓

𝑎𝑒 − 𝑏𝑑
=
(5.7543 ∗ 13.74) − (−22.07 ∗ 0.9739)

(−13.6 ∗ 13.74) − (−22.07 ∗ −26.75)
= −0.1294 

 

 

 

Table 4: Acceleration Analysis Given and Desired Values 

Given:  𝑟1, 𝑟2 , 𝑟3, 𝑟4, 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜔2, 𝜔3, 𝜔4 , 𝛼2 

Find: 𝛼3, 𝛼4 
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5 MATLAB Results and Discussion 

 An analysis was also completed in MATLAB and can be compared to the results of the 

subsequent sections. The complete MATLAB code can be found in Appendix D. A full range of 

motion of the mechanism was animated to the screen and can be seen in Figure 5. 

 

 

Figure 5 Landing Gear Mechanism Animation 

 

 This full range of motion diagram also provides support for the input 𝜃2 angles 

determined in section 3.4. It should also be noted that to make the gear retract to a perfectly 

straight alignment the ground link r1 will need to be lengthened. 

 

 A plot comparing the input angle, velocity and acceleration can be seen in Figure 6. The 

input lengths will need to be modeled as a sinusoidal wave to avoid the intense loads at the 

start and end of the mechanisms motion. This is especially crucial in that of landing gear, as 

meaningful data will be needed to ensure that there’s appropriate factors of safety. 
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Figure 6: Sinusoidal Inputs for θ2, ω2, α2 V.S. Time, t 

 

5.1 Position Graphs 

 When modeled in MATLAB the θ values can be plotted in comparison to each other. These 

graphs represent much of how we would expect these angles to move Figure 7. The θ3 will start by 

swinging open briefly and then will gradually decrease to the final retracted position. Additionally, θ4 will 

increase as this is the arm directly in line with the landing gear wheel. These angles are limited by the 

dimensions of the links. 
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Figure 7: Mechanism θ Values 

 

5.2 Velocity Graphs 

 The angular velocity values for Link 3 and 4 are shown in comparison to input angle θ2 in Figure 

8. A few trends in these graphs represent real life phenomenon. Both ω3 and ω4 start and end at 0, 

showing that this model will both begin at rest and will end at rest as well. The representation of ω3 

shows a sign change which corresponds to the links rotation, during the beginning of the cycle the link is 

in the negative x values and at the end is in the positive x position. This graph also reaffirms that ω4 id 

moving in the path on the positive x axis. Both exhibit a gradual increase and decrease in speed, which is 

desirable because of the adverse effects of the momentum of the mechanism on the rest of the aircraft. 
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Figure 8 Angular Velocity and Position 

 

5.3 Acceleration Graphs  

 Angular acceleration, α3 and α4, are modeled throughout the cycle in Figure 9. Similarly to the 

velocity and analysis, both links begin and end at rest as desired. The accelerations follow suit as having 

a gradual increase and decrease which help to offset any momentum effects on the aircraft. 

 

Figure 9 Angular Acceleration and Position Comparison 
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5.4 Methodology Comparisons 

 With the various methods of analysis now modeled in previous sections, Graphical Solution 

(Section 4.1.1), Snapshot Calculations (Sections 4.1, 4.2, 4.3) and the MATLAB Results (Section 5), we can 

compare them. The largest percent difference between the graphical solution and snapshot calculations 

for θ3 and θ4 is 4.6%. Similarly, the largest percent difference between the snapshot calculations and the 

MATLAB solution is 2.2%. Overall, this shows a very precise set of data and adds to the credibility of the 

results. 

 

Table 5 Snapshot Solution Comparisons 

Solution Type θ 3 θ 4 ω3 ω4 α3 α4 

Graphical Solutions -27.5 305.0 N/A N/A N/A N/A 

Snapshot Calculations -26.3 301.9 -0.075 0.363 -0.129 -0.181 

MATLAB Solutions -26.9 301.9 -0.075 0.363 -0.129 -0.181 
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6 Inverse Dynamics Problem Statement 

 If given the mechanism, the external forces and moments acting on the mechanism and the 

mechanism motion we can find the required driving force and the internal joint forces. A tabulated chart 

for the given and desired values can be found in Table 6. 

Table 6: Inverse Dynamic Requirements and Unknowns 

 

6.1 Center of Gravity Estimation 

 Center of gravity of the links is essential for the inverse dynamics portion of the analysis and will 

decide where the weight of each link will be acting. This will be assumed as being at the exact midpoint 

of the links, as shown in Table 7. This means that the angle between the link and the moment arms of 

the forces will be precisely 0°. This assumption will provide a benefit to the project as the absence of 

more complicated geometry of the links will make computations easier.  

 It can be estimated that the moment differences caused by the weight and external forces will 

be negligible for this analysis.  It is important however, to acknowledge that the information gained can 

be useful if this project we’re to be continued in the future, especially if designing landing gear for 

commercial use. 

Table 7: Center of Mass Locations 

 Link 2 Link 3 Link 4 

Center of Mass, Rg (in.) 6 15 13 

 

6.2 Mass Estimation 

 Finding direct schematics for a possible retractable landing gear mechanism will require more 

research time that will is not available with this report. In absence of this, an approximate 

Given 
𝑟1, 𝑟2 , 𝑟3, 𝑟4, 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜔2, 𝜔3, 𝜔4 , 𝛼2, 𝛼3, 𝛼4, 𝐴𝐺2, 𝐴𝐺3, 𝐴𝐺4, 

𝐶𝐺2, 𝐶𝐺3, 𝐶𝐺4, 𝐼𝐺𝑍2, 𝐼𝐺𝑍3, 𝐼𝐺𝑍4,𝑚2,𝑚3, 𝑚4, 𝐹𝐸3𝐹𝐸4,𝑀𝐸3, 𝑀𝐸4 

Find 𝜏2, 𝐹21, 𝐹32, 𝐹43, 𝐹14 
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representation is given for the link diameters and material used in the manufacturing. An example of the 

landing gear this attempts to model is found in Figure 10.  

 

 

Figure 10 The Approximate size of the landing gear modeled. 

 The masses will be determined using the volume that the links fill and the density of the 

material chosen. This will provide the best representation outside of having an actual physical 

mechanism to measure and weigh.  

 

6.3 Mass Moment of Inertia 

 The links are assumed to have a slender rectangular cross section in the 2D plane that our 

analysis is occurring. As provided in the Mechanism Kinematics & Dynamics NotesBook, Figure 11 shows 

the assumed profile of each link. Around the centroid of a rectangular cross section the mass moment of 

inertia is defined in the equation: 𝐼𝐺𝑍 =
𝑚∗𝐿2

12
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Figure 11: Source: Notesbook - Planar Link Slender Rod [1] 

 

6.4 Calculations and Tabulation 

 A common material for landing gear is high strength steel. This is for a few reasons, the first of 

which is that steel will have a very high strength which is required to support the weight of the aircraft. 

Steel is also resistant to fatigue or the cyclical loading of stress, such as turbulence in the air or from the 

jostling of an uneven landing strip. AISI 4340 Steel is assumed for the landing gear components and the 

material information from Matweb [5] is provided in Table 8. 

Table 8 AISI 4340 Steel Material Properties 

AISI 4340 Steel Normalized, 4 in Round Yield Strength (KSI) Density (lbm/in3) Brinell Harness 

 161 0.284 321 

 

 Each link will be considered to have a circular cross section with a diameter of 4 inches and will 

provide a cylindrical volume. This can then me multiplied by the density to give the mass of the link 

which can be factored into the inverse dynamics’ analysis. Since link 1 is going to be considered the 

ground link we do not need the mass and the mass moment of inertia, and it will not be included. Table 

9 summarizes the results shown in Appendix G. 
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Table 9 Mass and Mass Moments of Inertia 

Quantity Link 2 Link 3 Link 4 

Mass (lbm) 42.8 107.1 92.8 

Mass (slug) 1.3 3.3 2.9 

Mass Moment of Inertia (lbm*in2) 513.6 8032.5 5227.7 

Mass Moment of Inertia (slug*in2) 16.0 249.7 162.5 
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7 Inverse Dynamics Analysis 

 Building upon the Kinematic Analysis, this Inverse Dynamics section will show the forces and 

torques acting on the mechanism. For this analysis, it is considered that the mechanism to be tested in a 

laboratory setting and no external forces either from the plane weight or the wind resistance acting of 

the links. That is to say, 𝐹𝑒 𝑎𝑛𝑑 𝑀𝑒 = 0. 

 A snapshot calculation has also been completed to confirm the values determined by the 

MATLAB Code. This snapshot calculation will build upon previous calculations determined in subsequent 

sections, a table of these values is reproduced in Table 10. 

Table 10: Snapshot Calculation Values 

Link 

# 

Length 

(in) 

Angle 

(deg) 

Angular Velocity 

(rad/s) 

Angular Acc. 

(rad/s2) 

Mass 

(slug) 

Mass Moment of Inertia 

(slug*in2) 

1 32 0.0 N/A N/A N/A N/A 

2 12 315.0 0.824 -0.230 1.330 15.963 

3 30 -26.3 -0.075 -0.129 3.329 249.660 

4 26 301.9 0.363 -0.181 2.884 162.480 

 

7.1 Link 2 Details 

 Using the equations from Appendix H, the details for link 2 can be shown as: 

𝑟12 = (
𝑟12𝑥
𝑟12𝑦

) =  (
−6 ∗ cos (𝜃2)

−6 ∗ sin (𝜃2)
)  

𝑟32 = 𝑟12 + 𝑟2 = (
−6 ∗ cos (𝜃2) + 12 ∗ cos(𝜃2)

−6 ∗ sin (𝜃2) + 12 ∗ sin( 𝜃2)
) 

𝐴𝑔2 = (
𝐴𝑔2𝑥
𝐴𝑔2𝑦

) =  (
−6 ∗ 𝛼2 ∗ sin(𝜃2) − 6 ∗ 𝜔2

2 ∗ cos(𝜃2)

   6 ∗ 𝛼2 ∗ cos(𝜃2) − 6 ∗ 𝜔2
2 ∗ sin(𝜃2)

) 

 

7.1.1 Link 2 Snapshot Analysis 

𝑟12 = (
𝑟12𝑥
𝑟12𝑦

) =  (
−6 ∗ cos (315°)

−6 ∗ sin (315°)
) =  (

−4.24

4.24
) 

𝑟32 = 𝑟12 + 𝑟2 = (
−6 ∗ cos (315°) + 12 ∗ cos 315°)

−6 ∗ sin (315°) + 12 ∗ sin( 315°)
) = (

4.245

−4.245
) 

𝐴𝑔2 = (
𝐴𝑔2𝑥
𝐴𝑔2𝑦

) =  (
−6 ∗ 𝛼2 ∗ sin(315°) − 6 ∗ 𝜔2

2 ∗ cos(315°)

   6 ∗ 𝛼2 ∗ cos(315°) − 6 ∗ 𝜔2
2 ∗ sin(315°)

) =  (
−3.858

1.9039
) 
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7.2 Link 3 Details 

Using the equations shown in Appendix H, the details equation can be shown as: 

𝑟23 = (
𝑟23𝑥
𝑟23𝑦

) =  (
−15 ∗ cos (𝜃3)

−15 ∗ 𝑠𝑖𝑛 (𝜃3)
)  

𝑟43 = (
𝑟43𝑥
𝑟43𝑦

) =  (
−15 ∗ cos (𝜃3) + 30 ∗ cos(𝜃3)

−15 ∗ 𝑠𝑖𝑛 (𝜃3) + 30 ∗ sin(𝜃3)
) 

𝐴𝑔3 = (
𝐴𝑔3𝑥
𝐴𝑔3𝑦

)

=  (
−12 ∗ 𝛼2 ∗ sin(𝜃2) − 12 ∗ 𝜔2

2 ∗ cos(𝜃2)

   12 ∗ 𝛼2 ∗ cos(𝜃2) − 12 ∗ 𝜔2
2 ∗ sin(𝜃2)

−15 ∗ 𝛼3 ∗ sin(𝜃3) − 15 ∗ 𝜔3
2 ∗ cos(𝜃2)

 + 15 ∗ 𝛼3 ∗ cos(𝜃3) − 15 ∗ 𝜔3
2 ∗ sin(𝜃3)

)  

 

7.2.1 Link 3 Snapshot Analysis 

𝑟23 = (
𝑟23𝑥
𝑟23𝑦

) =  (
−15 ∗ cos (−26.3)

−15 ∗ 𝑠𝑖𝑛 (−26.3)
) =  (

13.446

6.648
)  

𝑟43 = (
𝑟43𝑥
𝑟43𝑦

) =  (
−15 ∗ cos (−26.3) + 30 ∗ cos−26.3)

−15 ∗ 𝑠𝑖𝑛 (−26.3) + 30 ∗ sin(−26.3)
) =  (

−13.448

−6.441
) 

𝐴𝑔3 = (
𝐴𝑔3𝑥
𝐴𝑔3𝑦

) =  

(

  
 

−12 ∗ −0.2303 ∗ sin(315) − 12 ∗ 0.824042 ∗ cos(315)

   12 ∗ −0.2303 ∗ cos(315) − 12 ∗ 0.824042 ∗ sin(315)

−15 ∗ −0.129 ∗ sin(−26.3) − 15 ∗ −0.0752 ∗ cos(−26.3)

 + 15 ∗ −0.129 ∗ cos(−26.3) − 15 ∗ −0.0752 ∗ sin(−26.3))

  
 
 =  (

−8.536

1.997
) 

 

7.3 Link 4 Details 

Using the equations derived in Appendix H, the details equation can be shown as: 

𝑟14 = (
𝑟14𝑥
𝑟14𝑦

) =  (
−13 ∗ cos (𝜃4)

−13 ∗ sin (𝜃4)
)  

𝑟34 = 𝑟14 + 𝑟4 = (
−13 ∗ cos (𝜃4) + 26 ∗ cos(𝜃4)

−13 ∗ sin (𝜃4) + 26 ∗ sin(𝜃4)
) 

𝐴𝑔4 = (
𝐴𝑔4𝑥
𝐴𝑔4𝑦

) =  (
−13 ∗ 𝛼4 ∗ sin(𝜃4) − 13 ∗ 𝜔4

2 ∗ cos(𝜃4)

   13 ∗ 𝛼4 ∗ cos(𝜃4) − 13 ∗ 𝜔4
2 ∗ sin(𝜃4)

)  

 



Page 25 of 57 
 

7.3.1 Link 4 Snapshot Analysis 

𝑟14 = (
𝑟14𝑥
𝑟14𝑦

) =  (
−13 ∗ cos (301.9)

−13 ∗ sin (301.9)
) =  (

−6.8697

11.037
)  

𝑟34 = 𝑟14 + 𝑟4 = (
−13 ∗ cos (301.9) + 26 ∗ cos(301.9)

−13 ∗ sin (301.9) + 26 ∗ sin( 301.9)
) = (

6.8696

−11.0366
)  

𝐴𝑔4 = (
𝐴𝑔4𝑥
𝐴𝑔4𝑦

) =  (
−13 ∗ −0.181 ∗ sin(301.9) − 13 ∗ 0.3632 ∗ cos(301.9)

   13 ∗ −0.181 ∗ cos(301.9) − 13 ∗ 0.3632 ∗ sin(301.9)
) = (

−2.903

0.211
)  

 

7.4 Matrix Solutions 

 Sections 7.1 – 7.3 details 9 equations and for our inverse dynamics problem we have a total of 9 

unknowns (Table #). This means that a real solution can be determined and a way to handle these 

solutions efficiently is to utilize a matrix solution.     

 As detailed in Appendix I, the [A] matrix can be shown as: 

 

−1 0 1
0 −1 0

−4.24 4.24 4.245
       

0 0 0
1 0 0

−4.245 0 0
           

0 0 0
0 0 0
0 0 1

  

0 0 −1
0 0 0
0 0 6.648

     
0 1 0
−1 0 0

−13.446 6.441 −13.448
    
0 0 0
0 0 0
0 0 0

 

0 0 0
0 0 0
0 0 0

   
0 −1 0
0 0 −1
0 0 − 11.03 −6.87

     
1 0 0
0 1 0

−11.04 −6.87 0
 

 

 

Additionally, the known matrix {b} can be described as: 

 

                        {𝑏} =        
−0.42769
43.05

−0.02552
 

{𝑏} =                                
−2.36802
107.74
−0.22365

 

{𝑏} =                              
−0.69769
92.92

−0.204228
 

 

 

 

 

 

 

[A] = 



Page 26 of 57 
 

 

After performing the Inverse Matrix Solution in a separate MATLAB program and given in Appendix K, 

our unknowns at a snapshot are determined to be: 

F12x = -45.1402 

F12y = -119.6602 

F32x = -45.5679 

F32y = -76.6102 

F43x = -47.9359 

F43y = 31.1298 

F14x = -48.6336 

F14y = 124.0498 

T2 = 834.5850 

 

7.5 Solution Discussion 

 It is important to acknowledge that these values do not align with the Full Range of Motion Code 

(FROM) discussed in Section 8. After troubleshooting, the {b} matrix is confirmed to be the exact same 

as the FROM code but the [A] matrix is unable to be confirmed with the code setup. For this reason, it is 

believed that the error is originating from here. It is believed that the MATLAB Code for FROM is the 

more reliable of the two sources because of the exact values that is used in calculations.  
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8 MATLAB Inverse Dynamics Results and Discussion 

8.1 Input Torque 

 After solving using Matrix Inversion, the input torque can be determined. This input torque 

shown in Figure 12, shows the amount to torque needed to dive the mechanism to its retracted 

position. This is crucial when determining what type of motor is needed and how much power it will 

require.  

 

Figure 12: Driving Torque, Average Torque and Root-Mean-Squared Torque VS Input Angle 

 

8.2 Shaking Moment Force and Moment 

 The shaking force and moment relate to the reaction force of the ground link r1. This is 

especially important in this case, as the ground link is designed to be attached to an aircraft. If the 

aircraft cannot withstand the reaction forces, the mechanism can be come misaligned putting those on 

board in danger. The MATLAB results of these forces and moments, is shown in Figure 13. 
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Figure 13: Shaking Force and Moment compared to Input Angle 
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9 Further Development 

 While the work presented in this report is to be best of the author’s ability, if given the chance 

for further development a few things could be pursued. Firstly, a redesign of the link lengths will provide 

a more aerodynamic design. Secondly, some of the MATLAB results and snapshot results do not align 

exactly, and more time could work out those bugs. Lastly, some of the external forces that could present 

themselves during use could be included and would inevitably make the problem both more difficult 

and more useful. 
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Appendix A: Position Analysis Mathematics 

 

𝐺𝑖𝑣𝑒𝑛: 𝑟1 =  32, r2=12, 𝑟3 = 30, 𝑟4 = 26, 𝜃1, 𝜃2 

𝐹𝑖𝑛𝑑 = 𝜃3, 𝜃4 

X & Y Components 

𝑥) 𝑟2 cos 𝜃2 − 𝑟3 cos𝜃3 = −𝑟1 cos 𝜃1 + 𝑟4 cos 𝜃4 

𝑦) −𝑟2 sin 𝜃2 − 𝑟3 sin𝜃3 = −𝑟1 sin𝜃1 − 𝑟4 sin 𝜃4 

Square 

𝑥) (𝑟3𝑐3)
2 = (𝑟1 𝑐1)

2 + (𝑟4 𝑐4)
2 + (𝑟2 𝑐2)

2 − 2 ∗ 𝑟1𝑐1𝑟4𝑐4 − 2 ∗ 𝑟4𝑐4𝑟2𝑐2 + 2 ∗ 𝑟1𝑐1𝑟2𝑐2 

𝑦) (𝑟3𝑠3)
2 = (𝑟1 𝑠1)

2 + (𝑟4 𝑠4)
2 + (𝑟2 𝑠2)

2 + 2 ∗ 𝑟1𝑠1𝑟4𝑠4 − 2 ∗ 𝑟4𝑠4𝑟2𝑠2 − 2 ∗ 𝑟2𝑠2𝑟1𝑠1 

Add X & Y, using trig identity. 

𝑟3
2 = 𝑟1

2 + 𝑟4
2 + 𝑟2

2 + 2𝑟4𝑐4(−𝑟1𝑐1 − 𝑟2𝑐2) + 2𝑟4𝑠4(−𝑟1𝑠1 − 𝑟2𝑠2) + 2𝑟1𝑟2(𝑐1𝑐2 − 𝑠1𝑠2) 

 

Simplify, Let: 

𝐸 = 2𝑟4(−𝑟1𝑐1 − 𝑟2𝑐2)  (𝐸𝑄 #4) 

𝐹 = 2𝑟4(𝑟1𝑠1 − 𝑟2𝑠2) 

𝐺 = 𝑟1
2 + 𝑟4

2 + 𝑟2
2 − 𝑟3

2 + 2𝑟1𝑟2 cos(𝜃1 + 𝜃2) 

Now we have: 

𝐸 cos 𝜃4 + 𝐹 sin𝜃4 + 𝐺 = 0 

Use: 

𝑡 = tan
𝜃4
2
  𝑠𝑜, cos𝜃4 =

1 − 𝑡2

1 + 𝑡2
 𝑎𝑛𝑑 sin𝜃4 =

2𝑡

1 + 𝑡2
 

Therefore: 

𝐸
1 − 𝑡2

1 + 𝑡2
+ 𝐹

2𝑡

1 + 𝑡2
+ 𝐺 = 0 

𝐸(1 − 𝑡2) + 𝐹(2𝑡) + 𝐺(1 + 𝑡2) = 0 

𝐸 − 𝐸𝑡2 + 𝐹2𝑡 + 𝐺 + 𝐺𝑡2 = 0 

(𝐺 − 𝐸)𝑡2 + 2𝐹(𝑡) + (𝐺 + 𝐸) = 0 

Use Quadratic Equation 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑡1,2 =
−2𝐹 ± √(2𝐹)2 − 4(G − E)(G + E)

2(𝐺 − 𝐸)
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𝑡1,2 =
−𝐹 ± √𝐹2 − 𝐺2 + 𝐸2

(G − E)
 (𝐸𝑄 #3) 

Solving For 𝜃4 

𝜃4 = 2 tan
−1(𝑡1,2) 

Solving For 𝜃3, use ratio of Y to X 

𝑦

𝑥
=
−𝑟3𝑠3
−𝑟3𝑐3

=
−𝑟1𝑠1 − 𝑟4𝑠4 + 𝑟2𝑠2
−𝑟1𝑐1 + 𝑟4𝑐4 − 𝑟2𝑠2

 

Therefore: 

𝜃31,2 = tan
−1
−𝑟1𝑠1 − 𝑟4𝑠4 + 𝑟2𝑠2
−𝑟1𝑐1 + 𝑟4𝑐4 − 𝑟2𝑠2
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Appendix B: Velocity Analysis Mathematics 

𝐺𝑖𝑣𝑒𝑛: 𝑟1 =  32, r2=12, 𝑟3 = 30, 𝑟4 = 26, 𝜃1, 𝜃2 

𝐹𝑖𝑛𝑑 = 𝜃3, 𝜃4 

Previously, 

𝑉𝑒𝑐𝑡𝑜𝑟 𝐿𝑜𝑜𝑝 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑟2 + 𝑟3 = 𝑟1 + 𝑟4 

 

𝑥) 𝑟2 cos 𝜃2 − 𝑟3 cos𝜃3 = −𝑟1 cos 𝜃1 + 𝑟4 cos 𝜃4 

𝑦) −𝑟2 sin 𝜃2 − 𝑟3 sin𝜃3 = −𝑟1 sin𝜃1 − 𝑟4 sin 𝜃4 

 

Take First Time Derivative 

𝑥) − 𝑟2𝜔2𝑠2 + 𝑟3𝜔3𝑠3 = −𝑟4𝜔4𝑠4 

𝑦) − 𝑟2𝜔2𝑐2 − 𝑟3𝜔3𝑐3 = −𝑟4𝜔4𝑐4 

 

Simplify and gather unknowns on Left Hand Side (LHS) 

𝑥) 𝑟3𝜔3𝑠3 + 𝑟4𝜔4𝑠4 = 𝑟2𝜔2𝑠2 

𝑦) − 𝑟3𝜔3𝑐3 + 𝑟4𝜔4𝑐4 = 𝑟2𝜔2𝑐2 

Simplify, and let: 

𝑎 = 𝑟3𝑠3    𝑏 = 𝑟4𝑠4 

𝑐 = 𝑟2𝜔2𝑠2    𝑑 = −𝑟3𝑐3 

𝑒 = 𝑟4𝑐4    𝑓 = 𝑟2𝜔2𝑐2 

Now we have: 

𝑥) 𝑎𝜔3 + 𝑏𝜔4 = 𝑐 

𝑦) 𝑑𝜔3 + 𝑒𝜔4 = 𝑓 

Solve for unknowns: 

𝜔3 =
𝑐 − 𝑏𝜔4
𝑎

 

𝑑(
𝑐 − 𝑏𝜔4
𝑎

+ 𝑒𝜔4 = 𝑓 

𝜔4(𝑎𝑒 − 𝑑𝑏) = 𝑎𝑓 − 𝑑𝑐 

Therefore: 

𝜔4 =
𝑎𝑓 − 𝑑𝑐

𝑎𝑒 − 𝑑𝑏
  (𝐸𝑄 #5) 

Now, solve for 𝜔3 
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𝜔3 =
𝑐𝑒 − 𝑏𝑓

𝑎𝑒 − 𝑑𝑏
 (𝐸𝑄 #6) 
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Appendix C: Acceleration Analysis Mathematics 

 

𝐺𝑖𝑣𝑒𝑛: 𝑟1 =  32, r2=12, 𝑟3 = 30, 𝑟4 = 26, 𝜃1, 𝜃2 

𝐹𝑖𝑛𝑑 = 𝜃3, 𝜃4 

 

Previous Velocity Equations 

𝑥) − 𝑟2𝜔2𝑠2 + 𝑟3𝜔3𝑠3 = −𝑟4𝜔4𝑠4 

𝑦) − 𝑟2𝜔2𝑐2 − 𝑟3𝜔3𝑐3 = −𝑟4𝜔4𝑐4 

Take First Time Derivative 

𝑥)  − 𝑟2𝛼2𝑠2 − 𝑟2𝜔2
2𝑐2 + 𝑟3𝛼3𝑠3 + 𝑟3𝜔3

2𝑐3 = −𝑟4𝛼4𝑠4 − 𝑟4𝜔4
2𝑐4 

𝑦)  − 𝑟2𝛼2𝑐2 + 𝑟2𝜔2
2𝑠2 − 𝑟3𝛼3𝑐3 + 𝑟3𝜔3

2𝑠3 = −𝑟4𝛼4𝑐4 + 𝑟4𝜔4
2𝑠4 

Group unknowns on LHS 

𝑥) − 𝑟3𝛼3𝑠3 − 𝑟4𝛼4𝑠4 = 𝑟4𝜔4
2𝑐4 − 𝑟2𝛼2𝑠2 − 𝑟2𝜔2

2𝑐2 + 𝑟3𝜔3
2𝑐3 

𝑦) 𝑟3𝛼3𝑐3 − 𝑟4𝛼4𝑐4 = −𝑟4𝜔4
2𝑠4 − 𝑟2𝛼2𝑐2 + 𝑟2𝜔2

2𝑠2 + 𝑟3𝜔3
2𝑠3 

Let: 

𝑎 = −𝑟3𝑠3    𝑏 = −𝑟4𝑠4  𝑐 = −𝑟2𝛼2𝑠2 − 𝑟2𝜔2
2𝑐2 + 𝑟3𝜔3

2𝑐3 + 𝑟4𝜔4
2𝑐4 

𝑑 = 𝑟3𝑐3    𝑒 = −𝑟4𝑐4  𝑓 = −𝑟2𝛼2𝑐2 − 𝑟2𝜔2
2𝑠2 + 𝑟3𝜔3

2𝑠3 + 𝑟4𝜔4
2𝑠4 

 

This Gives: 

𝑥) 𝑎𝛼3 + 𝑏𝛼4 = 𝑐 

𝑦) 𝑑𝛼3 + 𝑒𝛼4 = 𝑓 

Solve for unknowns: 

𝛼3 =
𝑐 − 𝑏𝛼4
𝑎

 

𝑑𝑐 − 𝑑𝑏𝛼4 + 𝑎𝑒𝛼4 = 𝑎𝑓 

𝛼4(𝑎𝑒 − 𝑑𝑏) = 𝑎𝑓 − 𝑑𝑐 

𝛼4 =
𝑎𝑓 − 𝑑𝑐

𝑎𝑒 − 𝑏𝑑
  (𝐸𝑄 #7) 

Now we can find that: 

𝛼3 =
𝑐𝑒 − 𝑏𝑓

𝑎𝑒 − 𝑏𝑑
 (𝐸𝑄 #8) 

 

  



Page 36 of 57 
 

Appendix D: MATLAB Code Kinematic Analysis 
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Appendix E: MATLAB Code for Point of Interest 
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Page 41 of 57 
 

Appendix F: Link Mass Calculations 

𝐺𝑖𝑣𝑒𝑛: 𝐷 = 𝑙𝑖𝑛𝑘 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐿 = 𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ, 𝜌 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦   

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝑉 =  
𝜋

4
𝐷2 ∗ 𝐿 

𝑀𝑎𝑠𝑠 = 𝑀 =  𝜌 ∗ 𝑉   

 

Link 2: 

𝑉 = 
𝜋

4
𝐷2 ∗ 𝐿 =

𝜋

4
∗ 42 ∗ 12 = 150.8 𝑖𝑛3 

𝑀 =  0.284 ∗ 150.8 = 42.8 lb𝑚   

 

Link 3: 

𝑉 = 
𝜋

4
𝐷2 ∗ 𝐿 =

𝜋

4
∗ 42 ∗ 30 = 377.0 𝑖𝑛3 

𝑀 =  0.284 ∗ 377.0 = 107.1 lb𝑚   

 

Link 4: 

𝑉 = 
𝜋

4
𝐷2 ∗ 𝐿 =

𝜋

4
∗ 42 ∗ 26 = 326.7 𝑖𝑛3  

𝑀 =  0.284 ∗ 326.7 = 92.8 lb𝑚   

 

 

 

 

 

 

 

Appendix G: Rotational Moments of Inertia Calculations 

𝐺𝑖𝑣𝑒𝑛:𝑀𝑎𝑠𝑠 = 𝑚, 𝐿 = 𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑀𝑎𝑠𝑠 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐼𝐺𝑍 =
𝑚 ∗ 𝐿2

12
 

 

Link 2:  
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𝐼𝐺𝑍 =
𝑚 ∗ 𝐿2

12
=  
42.8 ∗ 122

12
= 513.6 𝑙𝑏𝑚 ∗ 𝑖𝑛

2 

 

Link 3: 

𝐼𝐺𝑍 =
𝑚 ∗ 𝐿2

12
=  
107.1 ∗ 302

12
= 8032.5 𝑙𝑏𝑚 ∗ 𝑖𝑛

2 

 

Link 4: 

𝐼𝐺𝑍 =
𝑚 ∗ 𝐿2

12
=  
92.8 ∗ 262

12
= 5227.7 𝑙𝑏𝑚 ∗ 𝑖𝑛

2 

 

 

 

 

 

 

 

 

 

 

  



Page 43 of 57 
 

Appendix H: Link Details 

Link 2 

 

 

Moment Arm Length 

𝑟12 = (
𝑟12𝑥
𝑟12𝑦

) =  (
−𝑅𝑔2 ∗ cos (𝜃2)

−𝑅𝑔2 ∗ sin (𝜃2)
)  

 

𝑟32 = 𝑟12 + 𝑟2 = (
𝑟12𝑥 + 𝑟2 ∗ cos(𝜃2)

𝑟12𝑦 + 𝑟2 ∗ sin(𝜃2)
) 

 

Acceleration of Center Point 

𝐴𝑔2 = (
𝐴𝑔2𝑥
𝐴𝑔2𝑦

) =  (
−𝑅𝑔2 ∗ 𝛼2 ∗ sin(𝜃2) − 𝑅𝑔2 ∗ 𝜔2

2 ∗ cos(𝜃2)

   𝑅𝑔2 ∗ 𝛼2 ∗ cos(𝜃2) − 𝑅𝑔2 ∗ 𝜔2
2 ∗ sin(𝜃2)

)  
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Link 3 

 

 

Moment Arm Length 

𝑟23 = (
𝑟23𝑥
𝑟23𝑦

) =  (
−𝑅𝑔3 ∗ cos (𝜃3)

−𝑅𝑔3 ∗ 𝑠𝑖𝑛 (𝜃3)
)  

 

𝑟43 = (
𝑟43𝑥
𝑟43𝑦

) =  (
𝑟23𝑥 + 𝑟3 ∗ cos(𝜃3)

𝑟23𝑦 + 𝑟3 ∗ sin(𝜃3)
) 

 

Acceleration of Center Point 

𝐴𝑔3 = (
𝐴𝑔3𝑥
𝐴𝑔3𝑦

)

=  (
−𝑟2 ∗ 𝛼2 ∗ sin(𝜃2) − 𝑟2 ∗ 𝜔2

2 ∗ cos(𝜃2)

   𝑟2 ∗ 𝛼2 ∗ cos(𝜃2) − 𝑟2 ∗ 𝜔2
2 ∗ sin(𝜃2)

−𝑅𝑔3 ∗ 𝛼3 ∗ sin(𝜃3) − 𝑅𝑔3 ∗ 𝜔3
2 ∗ cos(𝜃2)

 + 𝑅𝑔3 ∗ 𝛼3 ∗ cos(𝜃3) − 𝑅𝑔3 ∗ 𝜔3
2 ∗ sin(𝜃3)

)  
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Link 4 

 

 

 

Moment Arm Length 

𝑟14 = (
𝑟14𝑥
𝑟14𝑦

) =  (
−𝑅𝑔4 ∗ cos (𝜃4)

−𝑅𝑔4 ∗ sin (𝜃4)
)  

 

𝑟34 = 𝑟14 + 𝑟4 = (
𝑟14𝑥 + 𝑟4 ∗ cos(𝜃4)

𝑟14𝑦 + 𝑟4 ∗ sin( 𝜃4)
) 

 

Acceleration of Center Point 

𝐴𝑔4 = (
𝐴𝑔4𝑥
𝐴𝑔4𝑦

) =  (
−𝑅𝑔4 ∗ 𝛼4 ∗ sin(𝜃4) − 𝑅𝑔4 ∗ 𝜔4

2 ∗ cos(𝜃4)

   𝑅𝑔4 ∗ 𝛼4 ∗ cos(𝜃4) − 𝑅𝑔4 ∗ 𝜔4
2 ∗ sin(𝜃4)

)  
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Appendix I: Inverse Dynamics Mathematics 

 

Link 2 Information 

Newton’s Second Law 

∑𝐹2 = 𝐹32 − 𝐹21 +𝑊2 = 𝑚2𝐴𝐺2  

Euler’s Rotational Dynamics Equation 

∑𝑀𝐺2 = 𝜏2 + 𝑟32 × 𝐹32 − 𝑟12 × 𝐹21 = 𝐼𝐺2𝑧𝛼2 

XYZ Scalar Equations 

𝐹32𝑥 − 𝐹21𝑥 = 𝑚2𝐴𝐺2𝑥 

𝐹32𝑦 − 𝐹21𝑦 = 𝑚2(𝐴𝐺2𝑦 + 𝑔) 

𝜏2 + (𝑟32𝑥𝐹32𝑦 − 𝑟32𝑦𝐹32𝑥 ) − (𝑟12𝑥𝐹21𝑦 − 𝑟12𝑦𝐹21𝑥 ) = 𝐼𝐺2𝑧𝛼2  

 

Link 3 Information 

Newton’s Second Law 

∑𝐹3 = 𝐹43 − 𝐹32 +𝑊2 = 𝑚3𝐴𝐺3  

Euler’s Rotational Dynamics Equation 

∑𝑀𝐺3 = 𝑟43 × 𝐹43 − 𝑟23 × 𝐹32 = 𝐼𝐺3𝑧𝛼3 

XYZ Scalar Equations 

𝐹43𝑥 − 𝐹32𝑥 = 𝑚3𝐴𝐺3𝑥 

𝐹43𝑦 − 𝐹32𝑦 −𝑚3𝑔 = 𝑚3𝐴𝐺3𝑦 

(𝑟43𝑥𝐹43𝑦 − 𝑟43𝑦𝐹43𝑥 ) − (𝑟23𝑥𝐹32𝑦 − 𝑟23𝑦𝐹32𝑥 ) = 𝐼𝐺3𝑧𝛼3  

 

 

Link 4 Information 

Newton’s Second Law 

∑𝐹4 = 𝐹14 − 𝐹43 +𝑊4 = 𝑚4𝐴𝐺4  

Euler’s Rotational Dynamics Equation 

∑𝑀𝐺4 = 𝑟14 × 𝐹14 − 𝑟34 × 𝐹43 = 𝐼𝐺4𝑧𝛼4 

XYZ Scalar Equations 
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𝐹14𝑥 − 𝐹43𝑥 = 𝑚4𝐴𝐺4𝑥 

𝐹14𝑦 − 𝐹43𝑦 = 𝑚4(𝐴𝐺4𝑦 + 𝑔) 

(𝑟14𝑥𝐹14𝑦 − 𝑟14𝑦𝐹14𝑥 ) − (𝑟34𝑥𝐹43𝑦 − 𝑟34𝑦𝐹43𝑥 ) = 𝐼𝐺4𝑧𝛼4 

 

Matrix Solution 

Known Matrices: [A] and {b} 

Unknown Matrices: {v} 

  

 

 

  

Table 11: Source:  [1] Williams RL. Mechanism Kinematics & Dynamics. 2019th ed. LuLu; 2019 
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Using Matrix Inversion, the unknown matrix can be solved. 

 

{𝑉} = [𝐴]−1 ∗ {𝑏} 
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Appendix J: MATLAB Code Inverse Dynamics 
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Appendix K: MATLAB Matrix Solver 
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