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Abstract

Kinematic and Dynamic Analysis of an airplane’s landing gear is detailed. With 90,000
planes in the air at any given time perhaps the most crucial element for a safe return is the
airplane lading equipment. This analysis is modeled on a one degree-of-freedom with one motor
input. Complete position, velocity and acceleration analysis can be detailed for the gears entire
range of motion, including a snapshot of a point of interest. The dynamic analysis details the
input torque and the shaking force and moment acting on the ground link.
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1 Introduction

A full kinematic and dynamic study of airplane landing gear will be detailed. This
includes position, velocity and acceleration analysis of the full range of motion of the landing

gear system.

2 Background

Airplane landing gear, much like the airplanes that they find themselves on are not
entirely alike and can be quite complex. This model will be representing a very simple four bar
model to simulate the motion of the ascension and retraction of the landing gear system. A real-

life version of an example of this kind of airplane landing gear is shown in Figure 1.

Figure 1 Real World Landing Gear Mechanism
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3 Kinematic Diagram

A kinematic diagram is essential to describing how this mechanism will move. In Figure

2 the linkage lengths are denoted by r; and the angle between the x axis and the lengths by 6;.

The angular velocities are denoted by an w; and the angular acceleration is described by «;.

VDb

Key
Acceleration
Velocity

Link Lengths
Angles

To begin our analysis, we will need to quantify the input values for position, velocity and

acceleration. These values can be found listed in Table 1.

Table 1: Table of Input Values

Input Information Symbol Value

Link Number 1 7 32in.

Link Number 2 103 12 in.

Link Number 3 T3 30 in.

Link Number 4 T 26 in.

Input Angle (Snapshot) 0, 315 degrees

Input Velocity (Snapshot) Wy 0.824 rad/s

Input Acceleration (Snapshot) a, -0.2303 rad/s"2

Page 6 of 57



3.1 Mobility and Degrees of Freedom

The degrees-of-freedom (dof) of a device describes the number of ways that it can move. From
our understanding of the landing gear mechanism, a dof of 1 is desired. This is implied by the name, as a
mechanism is a device that has one and only one degree-of-freedom. We can ensure that this is in fact
the case by using Kutzbach’s Mobility Equation (EQ 1) for Planar Jointed Devices to confirm the dof.

M=3(N-1)— 2%J; —J, (EQ.1)

In this Mobility Equation we have several variables to define. N will be the number of links and
will include the ground link. The number of one dof joints will be J; (ex. revolute or prismatic joints) and
the number of two dof joints (ex. Cam or gear joints) will be J,.

The landing gear mechanism that is being analyzed will have a total number of links of 4.
Additionally, the mechanism will be entire comprised of 4 revolute joints or J;. It can be proven that the
mobility will be 1, just as we were expecting.

M=3(4-1)—-2+4-0=1

3.2 Grashof Analysis

Some four bar mechanisms are somewhat unique in that we can predict the nature of the
rotation of the input and output links using the ground link location and the length of the links. When
analyzed two outcomes can be determined: a link can be considered a crank which has full rotatability
or a rocker that will have a limited range of rotatability.

To determine whether our landing gear can be considered a Grashof Mechanism, we will need
understanding of Grashof’s Law. Begin by considering the longest link as L, the shortest link as S, and the

two-intermediate links as P and Q. To qualify as a Grashof Mechanism, L +S < P + Q.
We have: 32 + 12 < 30 + 26
Now that we have qualified as a Grashof Mechanism, we can begin to investigate the kinematic
inversion that fits our mechanism. We know that our shortest link S, is going to be adjacent to the

ground link for in mechanism. According to Grashof, we can expect to have an input of a crank and an

output of a rocker.
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3.3 Limits of Landing Gear

While it is possible to have an output of a crank-rocker, we cannot expect this in our real-life
mechanism. When the landing gear is lowered, the wheels will need to make a 90-degree contact with
the ground to safely support the weight of the aircraft. Inversely, when the gear is raised it will need to
be tucked into the airplane to give better performance and fuel economy. Therefore, we can consider

the limits of the input angle as shown in our kinematic diagram in Section 3 as 360 > 8 > 236.09.

3.4 Position, Velocity and Acceleration Inputs

When we look at a snapshot of this mechanism and analyze the kinematics, we want to be sure
that the inputs we choose are meaningful. The position input represented here by 8,, is limited due to
factors described in Section 3.3. It can be assumed that the kinematics at the halfway point between the
fully extended and the fully retracted will be a point experiencing a unique velocity and acceleration. For
this position we will consider 8, = 315°.

The input velocity will also need to be estimated. We estimate that a typical landing gear system
will take about 5 seconds to retract and will travel 26 inches in our mechanism as shown in the

kinematic diagram in Figure 1. Given a cycloidal input for the rotational acceleration, the input now is

d
w, = 0.824 %
Finally, we can expect this mechanism to have an acceleration as it ascends and retracts.
. . . d
Following the same cycloidal function, we can expect a, = —0.2303 TSLZ
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4 Kinematic Analysis

4.1 Position Analysis

When we begin our position analysis of this mechanism, we will need to begin by defining our

givens and our desired values. These values are summarized in Table 2.

Table 2: Position Given and Desired Values

Given | 7, 1y, 13, Ty, 61, 0,

Find | 6,6,

We can then derive our Vector Loop Diagram shown in Figure 3 and the Vector Loop Eq (VLE) in

Equation 2.

Figure 3: Vector Loop Diagram

Vector Loop Equation:r, + 13 = 1, + 14 (EQ2)

The derivation of 8, can be found in appendix A and the resulting Equation 4 is shown
reproduced below. We can plug our given values into G, F, and E from Table 2 and solve for t from
equation 3.

E = 2r,(—1ryc; — 13¢;) = 2% 26(—32 % cos 0" — 12 * cos 315") = —2105.23
F =21,(rys; —138,) = 2%26(32%sin0” — 12 * sin315") = 441.23
G=r?+1i+1}—17+2r1,c05(6; + 0;)

= 3224262+ 122 —30% 4+ (2% 32 %12 * cos(0" + 315") = 1487.06
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We will only look at the positive open branch, therefore only 1 t.

_—F* VF? — G? + E? _ —441.23 - \/441.232 — 1487.06% + (—2105.23)? _

t, = = —0.555
! (G—-E) (1487.06 — (—2105.23))
Now we can plug in for 8,:
6, = 2tan"1(t) = 2tan"1(—0.555) = —58.1° = 301.9°
We can now use equation # to solve for 65:
1 TS1 TSy sy —32% sin(0”) — 26 * sin(—=58.1") + 12 * sin(315")

9 = t - t o o o
3 = —11C1 +14Cq — 1255 Ry . cos(0°) — 26 * cos(—58.1") — 12 * cos(315)

0; = —26.92°
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4.1.1 Graphic Solution
A graphic solution of the derived solutions from section 4.1 can be shown. The solution detailing

this landing gear mechanism can be found in Figure 4.

Figure 4: Graphical Solution Representation of the Landing Gear Mechanism

4.1.2 Using MATLAB to Show a Point of Interest

It can be considered that the most import point on this mechanism as the connection point
between the traditional four bar mechanism and the wheel. This point can be found at the intersection
of the 3 and . If this point is defined the MATLAB code and just how this point will move over time is

shown. Figure 6 shows this result using the MATLAB Code in Appendix E.
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Four-Bar Mechanism Coupler Curve

15t
= -20] |
o BE
25
0 5 10 15

ch (in.)

Figure 6: Point of interest displacement in X & Y.

4.2 Velocity Analysis
Much like the position analysis, we will start again by defining our givens and our desired values.

These values for velocity are summarized in Table 3.

Table 3: Velocity Analysis Given and Desired Values

Given Ty T2y 13, Ty, 91' 92193' 94; (QF)

Find W3, Wy

Using the derivation from Appendix B, we can label our constants and solve for w, from equation 5.
a = 1353 = 30sin(—26.9°) = —13.6 b =135, = 265in(301.9") = —22.07
d = —13c3 = 30c0s(—26.9") = —26.75 e =r1,c, = 260s(301.9") = 13.74
€ = 1w,5, = 12 % 0.824 x sin(315") = —6.992 f = r,w,c, = 12 % 0.824 * cos(315°) = 6.992

_af —dc _ (—13.6)(6.992) — (—26.75)(—6.992)
“ae—db (—13.6)(13.74) — (—26.75)(=22.07)

Wy = 0.363

Now we can solve for w3 using equation 6.
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_ce—bf (—6.992)(13.74) — (—22.07)(6.992) _
“ae—db (—13.6)(13.74) — (—26.75)(=22.07)

w3 —0.0749

4.3 Acceleration Analysis

As with both the Position and Velocity Equations, the givens and desired values can be
found in Table 4.

Table 4: Acceleration Analysis Given and Desired Values

Given: T, To, T3, Ty, 01,05,03,0,4, Wy, w3, Wy, 0y

Find: a3, a4,

Now using the derivation from Appendix C, we can label our constants and solve for a, from equation 6.
a =1353 = 30*sin(—26.3") = —13.6 b =15, = 26*sin(301.9") = —22.07
d = —13c3 = =30 % cos(—26.3") = —26.75 e =r1,c, = 26cos #(301.9") = 13.74
C = T1p,8; + w3y — r3wics — rywicy
= 12 % (—0.2303) * sin(—26.3") + 12 * (0.82404?) * cos(315") + 30
x (—0.0752) cos(—26.3") + 26 x (—0.3632) cos(301.97) = 5.7543
f = 1,05 — W3S, — T3w3S3 + 1W3s,
=12 % (—0.2303) cos(315") — 12 * (0.82404%) sin(315") + 30
% (—0.075%) sin(—26.3") — 26 * (—0.3632) sin(301.97) = 0.9739

_af —dc _ (—22.07 % 0.9739) — (=26.75 * 5.7543) _

= = = —0.181
%= e —bd  (—13.6+ 13.74) — (—22.07 + —26.75)
And now we can solve for a3 with equation 7:
—-b 5.7543 * 13.74) — (—22.07 * 0.9739
£ / = ( i )~ ( " ) = —0.1294

%3 = de—bd  (—13.6+13.74) — (—22.07 * —26.75) _
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5 MATLAB Results and Discussion

An analysis was also completed in MATLAB and can be compared to the results of the
subsequent sections. The complete MATLAB code can be found in Appendix D. A full range of

motion of the mechanism was animated to the screen and can be seen in Figure 5.

Landing Gear Animation

-40 -20 0 20
X (in.)

Figure 5 Landing Gear Mechanism Animation

This full range of motion diagram also provides support for the input 8, angles
determined in section 3.4. It should also be noted that to make the gear retract to a perfectly

straight alignment the ground link r; will need to be lengthened.

A plot comparing the input angle, velocity and acceleration can be seen in Figure 6. The
input lengths will need to be modeled as a sinusoidal wave to avoid the intense loads at the
start and end of the mechanisms motion. This is especially crucial in that of landing gear, as

meaningful data will be needed to ensure that there’s appropriate factors of safety.
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Figure 6: Sinusoidal Inputs for 0, w,, az V.S. Time, t

5.1 Position Graphs

When modeled in MATLAB the 6 values can be plotted in comparison to each other. These
graphs represent much of how we would expect these angles to move Figure 7. The 05 will start by
swinging open briefly and then will gradually decrease to the final retracted position. Additionally, 8, will

increase as this is the arm directly in line with the landing gear wheel. These angles are limited by the

dimensions of the links.
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Figure 7: Mechanism ¥ Values

5.2 Velocity Graphs

The angular velocity values for Link 3 and 4 are shown in comparison to input angle 6; in Figure
8. A few trends in these graphs represent real life phenomenon. Both ws and w, start and end at O,
showing that this model will both begin at rest and will end at rest as well. The representation of ws;
shows a sign change which corresponds to the links rotation, during the beginning of the cycle the link is
in the negative x values and at the end is in the positive x position. This graph also reaffirms that w, id
moving in the path on the positive x axis. Both exhibit a gradual increase and decrease in speed, which is

desirable because of the adverse effects of the momentum of the mechanism on the rest of the aircraft.
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Figure 8 Angular Velocity and Position

5.3 Acceleration Graphs

360

Angular acceleration, as and ay, are modeled throughout the cycle in Figure 9. Similarly to the

velocity and analysis, both links begin and end at rest as desired. The accelerations follow suit as having

a gradual increase and decrease which help to offset any momentum effects on the aircraft.

Qg (rad/ 2)

oy (rad/ 2)

a, & ay, V.S. 02

0.1rf
of
01
240 260 280 300 320 340 360
04r T T T
02f
0 o
02r
240 260 280 300 320 340 360
t, (deg)

Figure 9 Angular Acceleration and Position Comparison
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5.4 Methodology Comparisons

With the various methods of analysis now modeled in previous sections, Graphical Solution

(Section 4.1.1), Snapshot Calculations (Sections 4.1, 4.2, 4.3) and the MATLAB Results (Section 5), we can

compare them. The largest percent difference between the graphical solution and snapshot calculations

for B85 and 84 is 4.6%. Similarly, the largest percent difference between the snapshot calculations and the

MATLAB solution is 2.2%. Overall, this shows a very precise set of data and adds to the credibility of the

results.

Table 5 Snapshot Solution Comparisons

Solution Type 0; 0. w3 (O o3 ol
Graphical Solutions -27.5 305.0 N/A N/A N/A N/A
Snapshot Calculations -26.3 301.9 -0.075 0.363 -0.129 -0.181

MATLAB Solutions -26.9 301.9 -0.075 0.363 -0.129 -0.181
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6 Inverse Dynamics Problem Statement
If given the mechanism, the external forces and moments acting on the mechanism and the
mechanism motion we can find the required driving force and the internal joint forces. A tabulated chart

for the given and desired values can be found in Table 6.

Table 6: Inverse Dynamic Requirements and Unknowns

. 71,1y ,13,14,01,02,03,04, 0y, w3, Wy , Az, A3, Ay, Aga, Agzs Aga,
Given
CGo,CG3,CGy, 172, 1673, 16740 Mo, M3, My, Fr3Fpy, Mgz, Mgy

Find Tz, F21; F321F4»3' F14

6.1 Center of Gravity Estimation

Center of gravity of the links is essential for the inverse dynamics portion of the analysis and will
decide where the weight of each link will be acting. This will be assumed as being at the exact midpoint
of the links, as shown in Table 7. This means that the angle between the link and the moment arms of
the forces will be precisely 0°. This assumption will provide a benefit to the project as the absence of
more complicated geometry of the links will make computations easier.

It can be estimated that the moment differences caused by the weight and external forces will
be negligible for this analysis. It is important however, to acknowledge that the information gained can
be useful if this project we're to be continued in the future, especially if designing landing gear for

commercial use.

Table 7: Center of Mass Locations

Link 2 Link 3 Link 4

Center of Mass, Rg (in.) 6 15 13

6.2 Mass Estimation

Finding direct schematics for a possible retractable landing gear mechanism will require more

research time that will is not available with this report. In absence of this, an approximate
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representation is given for the link diameters and material used in the manufacturing. An example of the

landing gear this attempts to model is found in Figure 10.

Figure 10 The Approximate size of the landing gear modeled.

The masses will be determined using the volume that the links fill and the density of the
material chosen. This will provide the best representation outside of having an actual physical

mechanism to measure and weigh.

6.3 Mass Moment of Inertia

The links are assumed to have a slender rectangular cross section in the 2D plane that our
analysis is occurring. As provided in the Mechanism Kinematics & Dynamics NotesBook, Figure 11 shows

the assumed profile of each link. Around the centroid of a rectangular cross section the mass moment of

. .. . . . *L?
inertia is defined in the equation: I;; = m1_2
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Figure 11: Source: Notesbook - Planar Link Slender Rod [1]

6.4 Calculations and Tabulation

A common material for landing gear is high strength steel. This is for a few reasons, the first of
which is that steel will have a very high strength which is required to support the weight of the aircraft.
Steel is also resistant to fatigue or the cyclical loading of stress, such as turbulence in the air or from the
jostling of an uneven landing strip. AISI 4340 Steel is assumed for the landing gear components and the

material information from Matweb [5] is provided in Table 8.

Table 8 AlSI 4340 Steel Material Properties

AISI 4340 Steel Normalized, 4 in Round | Yield Strength (KSI) | Density (Ibm/in®) | Brinell Harness

161 0.284 321

Each link will be considered to have a circular cross section with a diameter of 4 inches and will
provide a cylindrical volume. This can then me multiplied by the density to give the mass of the link
which can be factored into the inverse dynamics’ analysis. Since link 1 is going to be considered the
ground link we do not need the mass and the mass moment of inertia, and it will not be included. Table

9 summarizes the results shown in Appendix G.
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Table 9 Mass and Mass Moments of Inertia

Quantity Link 2 Link 3 Link 4

Mass (lbm) 42.8 107.1 92.8

Mass (slug) 1.3 33 2.9
Mass Moment of Inertia (Ibym*in2) 513.6 | 8032.5 | 5227.7
Mass Moment of Inertia (slug*in?) 16.0 249.7 162.5
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7 Inverse Dynamics Analysis

Building upon the Kinematic Analysis, this Inverse Dynamics section will show the forces and
torques acting on the mechanism. For this analysis, it is considered that the mechanism to be tested in a
laboratory setting and no external forces either from the plane weight or the wind resistance acting of
the links. That is to say, F, and M, = 0.

A snapshot calculation has also been completed to confirm the values determined by the
MATLAB Code. This snapshot calculation will build upon previous calculations determined in subsequent

sections, a table of these values is reproduced in Table 10.

Table 10: Snapshot Calculation Values

Link | Length | Angle Angular Velocity Angular Acc. Mass Mass Moment of Inertia
# (in) (deg) (rad/s) (rad/s?) (slug) (slug*in?)
1 32 0.0 N/A N/A N/A N/A
2 12 315.0 0.824 -0.230 1.330 15.963
3 30 -26.3 -0.075 -0.129 3.329 249.660
4 26 301.9 0.363 -0.181 2.884 162.480

7.1 Link 2 Details

Using the equations from Appendix H, the details for link 2 can be shown as:
T12x —6 * cos (6,)
2 = (r12y) - (—6 * sin (92))
—6*cos (0;) + 12 * cos(92)>
—6 *sin (0,) + 12 * sin(6,)

= (Agzx) (=6 % ay *sin(8;) — 6 * w,? * cos(6;)
92— \4 \ 6*a,*cos(6,) — 6 * w,2 *sin(6,)

T3 = T2+ 12 = (
92y

7.1.1 Link 2 Snapshot Analysis
Ti2x —6 * cos (315°) —4.24
M2 = (T12y) - (—6 * sin (315°)> - ( 4.24 )
—6 * cos (315°) + 12 * cos 315")) _ ( 4.245 )
—6 * sin (315°) + 12 * sin(315°) —4.245

AgZx) 3 <—6 %ty * Sin(315°) — 6 * w,2 * cos(315°)> 3 (—3.858)

T3p = Tip+ 13 = (

Ag =
92 Agay 6 * at, * cos(315°) — 6 * w,2 * sin(315°) 1.9039
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7.2 Link 3 Details

Using the equations shown in Appendix H, the details equation can be shown as:

T3 =

<r23x) _ (—15 * COS (93))
23y —15* sin (63)

T43x —15 * cos (63) + 30 * cos(63)
43 = (7”433/) - (—15 * sin (63) + 30 * sin( 93)>

Agsx

455 (407)
957 \Agay
(12 % ay *sin(6;) — 12 * w,* * cos(6,) —15 * ag * sin(63) — 15 * w3* * cos(6,)
- 12 * ay * cos(0,) — 12 * w,? * sin(f,) + 15 * a3 * cos(03) — 15 * w32 * sin(63)

7.2.1 Link 3 Snapshot Analysis
(r23x) _ (—15 * COS (—26.3)) (13.446)
T23y) — \—15 * sin (—26.3) 6.648
_ (r43x) _ (—15 * cos (—26.3) + 30 * cos —26.3)) _ (—13.448)
T3 = ~ \~15*sin (—26.3) + 30 * sin(—26.3)) = \ —6.441

—12 % —0.2303 * sin(315) — 12 = 0.824042 * cos(315)
12 * —0.2303 * cos(315) — 12 * 0.824042  sin(315)

T3 =

Ta3y

Ag3x) _ _ (—8.536)
. 5 1.997

—15 % —0.129 * sin(—26.3) — 15 * —0.075“ * cos(—26.3)

+ 15 % —0.129 * cos(—26.3) — 15 * —0.0752 = sin(—26.3)

7.3 Link 4 Details

Using the equations derived in Appendix H, the details equation can be shown as:

Tiax —13 * cos (8,)

e = (my) - (—13 « sin (94))

—13 x cos (8,) + 26 * cos(8,)
—13 *sin (6,) + 26 * sin( 94))

Ag4x) 3 <—13 * ary * sin(f,) — 13 * w,? * cos(94)>

T34 = Tia t 7y = (

Ayy = (
g4 Agay 13 * ay * cos(6,) — 13 * w42 * sin(6,)
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7.3.1 Link 4 Snapshot Analysis

T4 =

(r14x) _ (—13 * COS (301.9)) _ (—6.8697)
T1ay —13 *sin (301.9) 11.037

—13 % cos (301.9) + 26 * cos(301.9) 6.8696
(—13 *sin (301.9) + 26 * sin(301.9)) - (—11.0366)

Ag4x) _ <—13 * —0.181 = sin(301.9) — 13 * 0.3632 * cos(301.9)> _ (—2.903)

A, = (
9% 7 \Agay 13 * —0.181 * cos(301.9) — 13 * 0.3632 = sin(301.9) 0.211

T34 = T4t 74 =

7.4 Matrix Solutions

Sections 7.1 — 7.3 details 9 equations and for our inverse dynamics problem we have a total of 9
unknowns (Table #). This means that a real solution can be determined and a way to handle these

solutions efficiently is to utilize a matrix solution.

As detailed in Appendix I, the [A] matrix can be shown as:

-1 0 1 0 0 0 0 0O

0 -1 0 1 0 0 0 0 O

—4.24 424 4245 —4245 0 O 0 0 1

[A] = 0 0 -1 0 1 0 0 0 O
0 0 0 -1 0 0 0 0 0

0 0 6.648 -—-13.446 6.441 —13448 0 0 O

0 0 0O -1 0 1 0 0

0 0 00 0 -1 0 1 0

0 0 00 0—11.03 -6.87 -11.04 -6.87 0

Additionally, the known matrix {b} can be described as:

—0.42769
{b} = 43.05
—0.02552
—2.36802
- 107.74 L
—0.22365
—0.69769
92.92
—0.204228
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After performing the Inverse Matrix Solution in a separate MATLAB program and given in Appendix K,
our unknowns at a snapshot are determined to be:
F12x=-45.1402

F12y=-119.6602

Fs2x=-45.5679

F32y=-76.6102

Fasx=-47.9359

Fssy=31.1298

Fiax=-48.6336

Fiay=124.0498

T,=834.5850

7.5 Solution Discussion

It is important to acknowledge that these values do not align with the Full Range of Motion Code
(FROM) discussed in Section 8. After troubleshooting, the {b} matrix is confirmed to be the exact same
as the FROM code but the [A] matrix is unable to be confirmed with the code setup. For this reason, it is
believed that the error is originating from here. It is believed that the MATLAB Code for FROM is the

more reliable of the two sources because of the exact values that is used in calculations.
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8 MATLAB Inverse Dynamics Results and Discussion

8.1 Input Torque
After solving using Matrix Inversion, the input torque can be determined. This input torque
shown in Figure 12, shows the amount to torque needed to dive the mechanism to its retracted

position. This is crucial when determining what type of motor is needed and how much power it will

require.
Torque vs. 192
300 - '
=
_Qq_ 200 i i

—Tau
—AVG Tau
RMS Tau

250 300 350
0, (deg)

Figure 12: Driving Torque, Average Torque and Root-Mean-Squared Torque VS Input Angle

Torque (L
S
o

8.2 Shaking Moment Force and Moment

The shaking force and moment relate to the reaction force of the ground link r1. This is
especially important in this case, as the ground link is designed to be attached to an aircraft. If the
aircraft cannot withstand the reaction forces, the mechanism can be come misaligned putting those on

board in danger. The MATLAB results of these forces and moments, is shown in Figure 13.
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Shaking Force & Moment vs. &,

L] L] Ll

240

¢, (deg)

Figure 13: Shaking Force and Moment compared to Input Angle
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9 Further Development

While the work presented in this report is to be best of the author’s ability, if given the chance
for further development a few things could be pursued. Firstly, a redesign of the link lengths will provide
a more aerodynamic design. Secondly, some of the MATLAB results and snapshot results do not align
exactly, and more time could work out those bugs. Lastly, some of the external forces that could present
themselves during use could be included and would inevitably make the problem both more difficult

and more useful.
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Appendix A: Position Analysis Mathematics

X & Y Components

Square

Given:ry = 32,1r,=12,13 = 30,1, = 26,04, 0,

Flnd = 93, 94
X) 15 €0S 0, — 13 c0s03 = —14 cos B4 + 1, cos 0,
y) =1, sinf, —r3sinf; = —ry sinf; — 1, sin 6,

x) (r3¢3)% = (rp €1)% + (13 €4)? + (13 €)% — 2 % 11 Cy73Cy — 2 ¥ 144120 + 2 ¥ 1101120,

¥) (r3853)% = (11 51)% + (14 $4)% + (12 52)% 4 2 % 1181745y — 2 ¥ 1384725, — 2 % 15,7175

Add X & Y, using trig identity.

12 =12 + 12 + 12 + 2150, (—T10p — 1503) + 213S4(—T1S1 — 135;) + 211(C1C5 — 51S32)

Simplify, Let:

Now we have:

Use:

Therefore:

Use Quadratic Equation

E = 2r,(—1ric; —1cy) (EQ #4)
F = 21,(1r151 — 1253)

G=1r?+124+1}—712+2r1r,c05(60; + 0,)

Ecosfy+ Fsin,+G =20

4 1—t? _ 2t
t= tan7 s0, cosf, = 1712 and sin@, = 152
1-t? 2t
+F +G6G=0

1+ t? 1+t
EQ-t)+FR+6(1+t>) =0
E—Et>?+F2t+G+Gt?=0
(G-E)Xt?24+2Ft)+(G+E)=0

_—b+t Vb2 — 4ac
x= 2a
_ —2F+/2F)? - 4(G—E)(G+E)
f12 = 2(G—E)
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_ —F+VFZ—GZ+E?

t12 = G-E) (EQ #3)
Solving For 8,
0, = 2tan"1(ty )
Solving For 83, use ratio of Y to X
Y 1383 1151~ 1S4 + 1S,
x - —13C3 - —11C1 +14C4 — 1S,

Therefore:

1 TT1S1 — 1Sy + 125,

03,, = tan”
' —11C1 +14C4 — 158,
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Appendix B: Velocity Analysis Mathematics
Given:ry = 32,1r,=12,13 = 30,1, = 26,604,060,
Find = 65,0,
Previously,

Vector Loop Equation:r, + 13 = 11 + 13

X) 15 0S8, — 13 c0s03 = —14 cos 01 + 1, cos 0,
y) =1y sinf, —r3sinf; = —r; sinf; —r, sinf,
Take First Time Derivative
X) — 135Sy + T3W353 = —T4W4S,
V) — W€y — T3W3C3 = —T4W4Cy

Simplify and gather unknowns on Left Hand Side (LHS)
X) T3W3S3 + 14W4Sy = T2W3 S5
Y) = 13w3C3 + 1404Cq = 120207
Simplify, and let:
a=713s3 b=m1s,
C=Tyw35, d = —T3C3
e =1y [ =1wc;
Now we have:
X) awz + bwy =c
V)dws+ew, =f
Solve for unknowns:
_Cc—bw,

w3 =
a

c—bw,
d(T-l_ €Wy = f

w4(ae —db) = af —dc
Therefore:

_af —dc
w4_ae—db

(EQ #5)

Now, solve for w3
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w3

_ce—bf
" ae—db

(EQ #6)
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Appendix C: Acceleration Analysis Mathematics

Given:ry = 32,r,=12,13 = 30,1, = 26,04, 0,

Flnd = 93, 04

Previous Velocity Equations
X) — 1yWySy + T3W353 = —T4W4S,
V) — ToWyCy — T3W3C3 = —T3W4Cy

Take First Time Derivative
X) — TpS; — TW3Cy + 13383 + T3W3C3 = —T404S4 — TaW2Cy
Y) — 1a05C; + 1058, — 30303 + r3w3s3 =

—T4Q4Cy + Ty W25,
Group unknowns on LHS

X) — T3Q3S3 — T4 QgSy = T4W2Cy — Ty @Sy — THW35Cy + T3W5C3

V) T303C3 — T404Cq = —T305Sy — T2 0C; + TW5S; + r3w5s3
Let:
_ _ _ 2 2 2
a = —13S3 b= —T13Sy C = —T1703Sy; —TL,W5Cy + r3w3C3 + T4W5Cy
d=13¢c5 €= —TyC4 f = —TQ2C; — W35, + 30353 + T,w2s,
This Gives:

x)aaz +ba,=c

y)daz +ea,=f
Solve for unknowns:
c—ba,
@G =

dc —dba, + aea, = af
as(ae —db) = af —dc

_af—dc £O #7
a4_ae—bd(Q )

Now we can find that:

ce — bf
=—L (EQ#
as ae—bd(Q 8)
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Appendix D: MATLAB Code Kinematic Analysis

10/18/19 1:00 AM

¥:\ProjectFourBarFullRangeOfMotionAddOn.m

cley cleary clear screen and defined -

Inputs
DR = pi/l80;

rl = 32; r2 = 12; r3 = 30; rd4d = 20; rca = 0;

thl = 0*DR; th2 = 315*DR; conversicn of degree to rad
rlx = rl*cos{thl); rly = rl*sin{(thl);

th2d = 270*DR; thZf = 360*0CR; th2 = [th20:th2f]*DR; th2 array

td = 0; dt = 0.1; tf = 5; £t = [t0:dt:tf]

H = (tf-td)/dt + 1; nunber of times to repeat loop for F.R.O.M. using
figure;
for im1:M, % F.R.0.M. loop over all input

sidal FNC From Padge

th2 (i) = th20+{th2f-th2d) * ((t(i) /tf)=((1/(2*pi)) *sin{2*pi*t (i) /L£)));
w2{i) = {(({th2f - th20)/tf)*{1l - cos((2*pi*t{i))/tf));

alpha2 (i) = ((2*pi*(th2f = th20))/(tf"2)) *sin((2*pi*t(i))/tf);

betaZ (i) = ((4*({pi~2)*(th2f = th20))/(tE"3)) *coes ((2*pi*t(i))/tL);

Fosition analysis: Sclwving for heta4
2*cd* (-rl*cos({thl) - r2*cos(th2(i}));

Z*rd*(rl*sin(thl) = rZ*sin(thZ{(i)))¢

= rl*2 + rp2"2 = r3*2 + r4"2 + Z2¥rl¥*r2*ces{(thl+th2 (i)}

@ = m
|

topen = (-F - sqrt(E*2 + F*2 - G*2)) [/ (G-E); open branch
th4 (i) = 2*atan{topen); %The 2 Multplyer is important!
Lwve for i, coupler point, transmissicon angle; open branch only
ax = =r2*cecs(th2(i));
ay = r2*sin{th2{i)};
bx = rd*cos(thd4(i));
by = -rd*sin(th4 (i)):
cx = -rl*ces(thl);
cy = -rl*sin(thl);
th3 (i) = atan2 (bytaytcy,bxtaxtcx);
mi{i}) = abs{thd4(i)=th3(i)};
pcx{i) = r2*cos(th2 (i)}
pey (i) = r2*sin({th2 (i)},

= r3*s%n{th3ii3):
rd*sin(thd (1))
r2*w2 (i) *sin (th2{i) )y

oo
]

1]
[}
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0718519 1:00 AM Y:WProjectFourBarFullBangeOfMoti cnAddOn . m

d = =r3*gas{ch3i{i)):
& = rd¥cos{thd{i]].;
f = rZiwl|ilveos(EhZ{i));

Solutians

wa{i) = {{a*f)-dd*e) ) la*e) —{d*b) )y Fvelocity Outputs
WL = {{e*e)-db*£)) flate) —1d*b)

Acclearaclon Analyele

C o= =ri*alphaz{li*elndthZ (L) 1=r&* {{wZ {l) )" &) *coslthZ (L)) + r3* {{w3 (L) )"2) *coslth3 (1))
{i1)1"*Z) *cos{thd (L)1)

F = -rivalphaZ{i)*cos{thZ (i) J+zZ* {{wZ (i) )*Z) *sin{thZ{i]) + r3* {{w3{i))1*2Z) *sin{th3{i]]
{Lr )= E *sindthd (i

Solving for Accleration Alphas

alphad (L) = {{=a*F)={=d*C) )/ {{=a*=a)={=h*=d));
alphai{l) = (jC*=a)={=b*F) )/ {{=a*=a)={=h*=d));

Draw four-bar Mechanism Eo the screen, o
w2 = [0 rZ*cos{thZ{i)1]1]+ Coordinates far Link #2
y2 = [D rZ*sin{thZ(i))] s
23 = [rZ*cos{thZ{i]) rla+rd*cos{thd{i)) pexi{il]ls Coordinactes far link #3
¥3 = [rZ*sinithZ{i)) rly+rd*sinithd 1)) peylil]:
x4 = [rlx rix+rd*cos(thdii))]: Coordinaces for link #4
¥4 = [rly rly+rd*sinlchd{l))]:
plot {xZ, y2, "o ", xd, ¥4, "r")
pacchixd, p3, "g" )
gt {gea, "FoncSize' ,19); xlabel {"wicd {wietm) ") r plabel{"wic¥ {iviem) ')

axis|'square'); axis{[-r2 rl4rd -{zl+r2+d) /2 (rler2+2d)/52]) )5 grid;

pause{l/3); %Pause to make animation wisible
if je=]
panEel Cligking Enter Will Froceds Animatcion
ard
End

Flocs outglde lLoop

figure;

ploti{t, thZ/DR) ; xlabel {'tims {==c)'); ylabel {'thetaZ (d=g)'); grid; title|'Thetaz V.5, Time');

axis{[0 5 269 361]);

figura:

ploti{t,w2) s xlabel{'time {sec) ')y wlabel{'angular welocity {rad /s ")y qgridr cicle('Omega?

Tima"];
axie{[D 5 0 D.6EES]) &

Iigure:

plot{t,alphaZ); xlabel {"time {sec)]'"); ylabel {"angular acceleration {red/s"Z)"); grids title{"Alpha v

5. Tim=");

axis{[D 5 -4 4])1s

2 of 2

bordr [wd e’

= pdv [ wd &

V.. &
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Appendix E: MATLAB Code for Point of Interest

% Jonathan Bowman Four Bar Landing Gear Mechanism
£ ME 3011 Interm Report Point of Interest

cle; clear; % clear screen and defined variables

¥ Inputs
DR = pi/180;

YPosition Inputs
rl = 32; r2 = 12; r3 = 30; rd = 20; rca = {:

thl = 0*DR: th2 = 315*DR; % conversion of degree to rad
rlx = rl*co=(thl); rly = rlvsin(thl):

th20 = 270*DR;: th2f = 360*DR; th2 = [th20:th2f]*DR; % thZ array
L0 =0; do = 0,1} tf = §5; © = [CO:dr:tf]

H = (tf-t0)/dt + 1; % number cof times to repeat loop for F.R.O.M. us=ing time!
figure;

for i=l:NH, % F.R.0.M. loop over all input thz
$Full Cycloidal FNC From Fage B2

th2 (i) = th20+(th2f-th20)*{(t(i)/tf)=-((1/(2*pi))*adin(2*pi*t (i) /L)) )
w2 (i) = ((th2f - th20)/tf)*(1 - coa((2*pi*t(i)}/tL));

alpha2 (i) = ((2*pi*(th2f - th20))/(tf~2))*adin((2*pi*c (1)) tf);

beta2 (i} = ({4*(pi~2)*(ch2f - th20))/(cf~3))*cos((2*pi*t(i))/tL):

% Position analysia: Solving for thetad

E = 2#%r4*(-rl*cos(thl) - r2*cos(th2(i)})):

F = 2*r4*(rl*sin(thl) - r2*sin(ch2(i))):

G = rla2 + r2*2 = r3*2 4+ ri4~2 + Z*ri*r2*coa(thl+th2(i)):

topen = (=-F - sgrt(E~2 + F~2 - G~2)) / (G-E); % open branch
thd (i) = 2*acan(topen): %The 2 Multplyer is important!

% Solve for thi3, coupler point, transmission angle; open branch only
ax = -r2*cos(th2(i)); % Point A

ay = r2*ain(th2(i)):

bx = rd*cos(thd(i)): % Point B

by = =rd*ain(chd(i));

CKX = =rl*cos(thl):

ey = =rl*asin(thl):

thi(i) = atan (by+ay+cy,bx+ax+cx); % thetal

muf{i) = aba(thd(i)-th3(i)); % transmission angle

pex{i) = rd*cos(thd (1));
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10/18/19 1:08 PM \\home.ohio.edu\home\jbl46214\Desktop\... 2 of 3

pey (i) = rd*sin(th4(i)):

f¥Velocity Analysia Open Branch

a = ri*sin(th3(i)): $Define Variables
b = rd*zin({thd (i)}

€ = r2*w2(i)*sin(th2 (1)):

d = -ri*cosa(th3(i)):
e rd*coa(thd(i)):
f=r2*wZ(i)*cos(th2(1)):

§Sclutions

wd (i) = ((a*f)=id*c))/((a*e)=(d*b)): EVelocity Cutputs
w3{i) = {({c*e)=(b*f))/((a*e)=-(d*b));

fAccleraticn Analysis

€ = -r2+*alpha2 (i)*sin(th2(i))-r2*((w2(i))~2)*co=(th2 (1)} + r3*((w3(i))~2)*coa(thi(i))w

# rd*((wd(i))"2)*cos(thd (1)):

F = -r2*alpha2 (i)*cos(th2(i))+r2*((w2(i))~2)*sin(th2 (1)) + £3*{(w3(i))~2)*sin(th3 (1))«

= rd*((wd (1)) ~2)*ein(thd (1) ):

end

$5olving for Accleration Alphas

alphad (i) = ((=a*F)=(=d*C))/((=a*=-e)=(=b*=d)):
alphald i) = ([(C*=e)=(=b*F))/((-a*-e)=(=b*-d));

% Draw four-par Mechanism tc the screen, open branch only
%2 = [0 ri*cos(thZ(i))]: % Coordinates for Link #2

y2 = [0 r2*sin(th2(i))]:

X3 = [r2*cos(th2(i)) rix+rd4*cos(thd(i)) pecx(i)]:; % Coordinates for link #3
w3 = [r2*sin(th2(i)) rly+rd*sin(thd(i)) peyil)]:

X4 = [rlx rlx+ri*cos(thd(i))]: % Coordinates for link #4

yd4 = [rly rly+rd*ain(thd(i))]:
plot (X2,vE, "D, xd,v4,'c")
patch(x3,¥3,'a");
set (gcea, "FontSize',19): xlabel ("‘itX (“itm)'): ylabel ("“itY (“\itm)'):
axis('square'): axis([-r2 rl+rd -(rl+r2+rd) 2 (rl+rd+rd)s2)): grid;
pause (1/3): %Pause to make animation viszible
if jm=]
pause; % Clicking Enter Will Frocede Animation
end

% Plots ocutside loop

figure;

plotit,th2/DR): zlabel('time (=ec}'): ylabel{'thetaZ (deg)'): grid: title('Theta2 V.5.¢
Time"');

axis ([0 5 269 3€1]):
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10/18/19 1:08 PM ‘“\‘\home.ochioc.edu\home\jbl46214\Desktop\. .. 3 of 3

figure;

plot(t,w2):; xlabel{'time (sec)'):; vlabel('angular welcoccity (rad/s)"): grid; title('CmegaZ¥’
V.5. Tima'):

axis{[0 5 0 0.6283]);

figure;

plot(t,alphal); xlabel('time (sec)'):; yvlabel ('angular acceleration (rad/fs"~2)"): grid;(
tictle{"Alpha V.5. Time'):;

axis([0 5 -4 4]):

figure;

plot (pcx,pcy) ;s grid; axis('equal');

get (gea, "FontSize';19); title('Four-Bar Mechanism Coupler Curve');
xlabel (" {%itX] ({“itm})'): wlabel('{\it¥} ({“itm}}'):
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Appendix F: Link Mass Calculations
Given: D = link diameter, L = link length, p = Density
Volume of a cylinder =V = %DZ * L

Mass =M = p*V

Link 2:

s A
V= ZDZ*LZZ*42*12=150'8m3

M = 0.284 % 150.8 = 42.81b,,

Link 3:

T A
V= ZDZ*L=Z*42*30=377.0in3

M = 0.284%377.0 =107.11b,,

Link 4:
V= %DZ*L:%*4Z*26:326.7in3

M = 0.284 x326.7 =9281b,,

Appendix G: Rotational Moments of Inertia Calculations
Given: Mass = m, L = Link length

m* L?

Mass Moment of Inertia = Ig; = 3

Link 2:
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lgz =

Link 3:

lgz =

Link 4:

lgz =

m * L2

42.8 x 122

= 513.6 lb,, * in®

12 12
m=*L?  107.1* 302 80325 L. » in?
= *
12 12 > Om * 1
m=*L?  92.8 262 52277 b x in?
= *
12 12 o/ Om
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Appendix H: Link Details

Link 2

Moment Arm Length
- (lex) _ [—Rgz * cos (63)
12 T12y —Ry; * sin (6;)

Tiox + 12 * cos(Bz))

T3 = Ty + 1, = )
32 12 172 <r12y + 1, *sin(6;)

Acceleration of Center Point

A =<
927 \Agay

Agzx) _ —Ryp * @ *sin(6,) — Ry, * w,* * cos(6;)
Rz * ay * cos(8;) — Ryp * w2 * sin(6,)

)
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Link 3

Moment Arm Length
= (7”23x) _ [ —Rgs * cos (63)
= T23y —Rgy3 * sin (63)

_ (7’43x) _ <r23x + 73 * cos(93)>

Ta3 = .
3 T43y T3y + 13 * sin(63)

Acceleration of Center Point

A3x
a2 = (47
9% 7 \Agay

[Ty xap *sin(B;) — 13 * wy? * cos(B,) —Rgs * az * sin(f3) — Ryz * w3* * cos(6,)
—\ 1y ray *cos(0,) — 1, * w2 *sin(0,) + Rgy3 * a3 * cos(f3) — Ry3 * w3? * sin(f3)

)
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Link 4

v
D)

f\‘
P
-
N
ﬂ""!
“Fas

Moment Arm Length
N (7”14x) _ (—Rga * cos (64)
17 gy —Rg4 * sin (6,)

Tigx + 14 * cos(94))

T34 = Tyu + 1y = )
34 i <r14y+r4*sm(94)

Acceleration of Center Point

Ag4x) 3 <—Rg4 * 0y *SiN(0,) — Ryy * wy° * cos(94)>

Aga =
g4 Agay Rys * ay * c0s(0,) — Rgy * wy? * sin(B,)
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Appendix I: Inverse Dynamics Mathematics

Link 2 Information

Newton’s Second Law

Z Fy = F3p — Fp1 + W, = myAg,
Euler’s Rotational Dynamics Equation
ZMGZ = Ty + 13y X F3p — 113 X Fyy = I,y
XYZ Scalar Equations
F3ox — Fo1x = MpAgoy

F33y — Fo1y = My(Agay + 9)

T + (T32xF32y - 7”32yF32x) - (T12xF21y - 7”12yF21x) =I5z,

Link 3 Information

Newton’s Second Law

Z F3 = Fy3 — F3, + W, = m3Ags3
Euler’s Rotational Dynamics Equation
2M63 = T3 X Fy3 — 13 X F3p = Ig3,03
XYZ Scalar Equations
Fazx — F32x = M3Agay
Fu3y — F33 —M3g = m3Agsy,

(r43xF43y - 7"43yF43x) - (7"23xF32y - 7”23yF32x) = 53,03

Link 4 Information

Newton’s Second Law

Z Fy = Fiy —Fu3 + Wy = mydg,

Euler’s Rotational Dynamics Equation

ZMG4- = T4 X Fig — T34 X Fi3 = lg4,04

XYZ Scalar Equations
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Fiax — Fazx = MyAgax
Fiay — Fazy = My(Agay + 9)

(r14xF14y - r14yF14x) - (r34xF43y - r34yF43x) = lga,04

Matrix Solution
Known Matrices: [A] and {b}

Unknown Matrices: {v}

Table 11: Source: [1] Williams RL. Mechanism Kinematics & Dynamics. 2019th ed. LuLu; 2019

[ -1 0 1 0 0 0 0 0 0][Ey My Ay x

0 -1 0 1 0 0 0 0 O0||F, my(Agyy + &)
hay  Thax  —Tay Py 0 0 0 0 1|[Fyy 16222

0 0 -1 0 1 0 0 0 0, My Agyy — Feyy
0 0 0 -1 0 1 0 0 o TF‘“X =0 my(Agsy + 8)— Fagy
0 0 Par  TMax  Pay Tpx 0 0 O0||Fy 1370t = T3y Fpay + Vgay Fpyy =M,
0 0 0 0 -1 0 1 0 O||Fqw My Aoy —Frix
0 0 0 0 0 -1 0 1 0| Fs m(Agey +8)— Fryy

| 0 0 0 0 Fyy “Tux —hay hax O 5, Laz0%% = TeaxFray + TpayFrax — Mg, |

[41{} ={&}
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Using Matrix Inversion, the unknown matrix can be solved.

{V} = [A]7" « {b}
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Appendix J: MATLAB Code Inverse Dynamics

111718 £:30 B¥ D:ME 2011l Fim.

.. ‘\LandingGearFinalVerld.m

1 of

[a}]

] 2 = i
k i CHF - |
i HE | i =

LS [} - il
Oh = 120¢
Ak _neina wl

= O=[§;
Fl®aos(Ehl) ;

Fly = el*sim(chl)

il Mogent of ‘

IgZe = 513 _&6/32.174r & ol

[g3z = S032.5/32.174;

adr = SIFT_T/33.174;

iGiven that the Welght hets at the Sentes 4

Bz =

Fg: =

Bga =

il P DeEC&EmRir Fa

thZl = Z2365.09*D0; thif = Je0*DRf thl = [thZD:thaf] *DOR; z

th = 0 4t = .13 tf = 5 £ = [vhsde:inf]

H = {tIf=w0),de + 1 1 _S I (4 K »

Eh2{i} = chlO+{ehk2f=-thI0)*{{t{i] fel]

w2ill) = [({th2f ElZ0) ST} * |1 aod |25l

..... A Lee (1) el b

dlphaZi(l) = [(Z*piT(chal

batal (i} = {([(d*{pi=2)*{thZf

tha0) e Zij*ain{(Z*pi*c{il } /L

ER20} ) FIEE=3]) b deoa [ {2 %pl +E

[{lF[2*pLl }*aim (2 *pl*t (L
i =l £
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11717718 €:30 B¥  D:WHE 201l Fim...‘landingGearFinalVerl6.m 2 of 6

E = =ZF¢pd* [rltcea(thl) + ri*cas{thE{(L)jis
F e =F*pd*[(rl*sim(thl) & F2*sin{thZ{Li}lis

G = gl*Z + g2*% = FI3*Z ¥ Fd 2 4 ZTrplEelvoas (thleilE (4] )

Copan = [=F = &gFt|BE*2 + F*I = &*3}] f [G=E)} % Solaticsm far T (Open Bramch)

thd i} = 2J*atan|tapsn) AEaen 2 HUlL. Becaldse Can i double walised

& d [ il

"
Lt
=
i
&

d tranamlssion angle [(Opan BEanch)

o

a¥ = F2voodE (ThE{L) s & Point
ay = =pZ*ain(Ehl{i]

¥ = Fl*cos(thllfy & Point B
By = =pl*aim(ehl};

¥ = =Pdtond (thd (L))} iPkaine C

oy = ravainithd (L} ]

thifi} = atand (by+ayrey, bBEtar+cih i 8 thetas

aCcupler Point Positlon
wafl)] = aba({thd (L)~th3{L)}s & tramamission angla
poR{i) = pd*coaithd (1))
poyli) = ed*aindth4 (i3]

AVelocity Aralyals [(Open BEanch)

= pEegin(ch3{ilis
= pd*sinichd {i})s

e o= FFrER i) *aln{chI {11}

-

R
L]

wad(l) = [{a*f)l={d*c)] /S {a*a]={4*k]}; for 4
wW3L] = [{era)=(b*L)] S {a*e)=-{d*E]]} for 3

Zhccleratian ARALYELS

C o= =r2ralphal (1} *ain(th2 (1)) =3 (WE (L)} 3 ) *cosm (thI (1)) + EZ3*{ (WI(L)}*Z)tooa (LhE (L)) o
# FPA* [{Wwd (1} 2) *cos{tha{il]}
F = =r2evalphal (i1} ocos (thI {1} i+ (w2 (L)} 20 *simnithZ (i) + E3+{ (Ww3{L)} 2 vaim(th3(L)) &

= paE*[iwd (i} 2) *alnltha{il ]

adSelving Ffar Accleraticn Alphas

alphad (L) = Il:-l'l"':-l:-i'::I."I;--'--:I-Il"'_"-'"ll.- Rkngolar Acceleration Outpot for 4
AlphaZ(L) = [(Ct*=a}={=E*F}]1S(|=i*=&]=[=B*=d)]); RAkngolar Acceleration Ootpat for 3

iLimnk 2 Details
(LY = =fg2*cas (tha (L]}
Eliyil) = =Rgl¥*aln{thI{l)l}}
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;30 B D:\ME 3011 Fimn.

.- 'H.Lm-:l.ingGe:.rI"_n:'_T.’e:lE .Tm 2 of &

 Forood (thZ (1ilf

+ E2*alm(thI(iils

elZx{i}
ElZw{di}
A2x(l) = =~g2*alphal (i} *ain(thl (1}]
g2 *alpkhal (1) *cos (Th2 (1] ]

ilimk 3 Details
= Rgitcea(th3I(i)is

= =fgdTaln (th3{L])]}}

= pI3wii]

- F23wii}

eI*cem (th3(1h1f

+ E3*sim(th3(1i]f

Ag3x(l) = =-r2*alphal{i]*ain{tha{i]l]
[ER3 (8] ] B3t (a3 (1] Zi*eca (thI (L)) ¢

AgIy (L) =

(El3 4]}

rrtaplphal (i) *coa{thI{i]]

g3 a3 (i} *Zh*ainithI (L))

FldE(l) =

Fldy(l) =

Pgdrons (ERA(L]]
PgdTrsain (ERA (L]} }

p3dE(l) =
FI4YIL) =

elaw{i}

elay{i]

+ Ea*cos (thd (1]

+ FaA*sin{thd (13]f§

Pgd*alpkhad (i) *ain(thd (i}]
PgdTalnklad (1) *coem(thd (1))

Agdx (1) =
Agdy (1) =

Farlalles

AMATILHE

Al = [El2w(i)f12};
AZ = |[=rllm{i)FLZ)s
A3 = |[=r32ywi{i)FLE)¢
RS = [=r32yi{i)rfLE)¢
AS = [rZ3w(i)f12}¢
AE = |[=F23m{i)FLE)¢
AT = [=pd3y (i) 02}
AE = [rpd3w(i) 12}
A = [E3dw(i) 12}
AlD = [=r3&sm(i} 02}
All = [=elay(i} 02}

ARl = pldm(i)}

Rgz* (w2 ii) 2} *coa (th2 (i}

R ¥ (w2 (L) *2}*ain(th2{i} )}

re* (w2 il 2} *caa (thI (i)} Rg3*alphad (1) *sin &

rEE w2 (L) 2} *ainith2 (i} + Rg3*alphal(l) *cos ¢

=2} *eaa [chd (6] b

Rga® (g L)
Rga® (g (L)

- R PR
2} *aim{elyd (9]0}
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11/17/18 €:30 B¥ D:\HE 30ll Fimn...'\LandingGearFinalVerl6.m 2 of @

[=]
[=]
[ = = =]

& from infa®2 te FLfa™Z

Bli{i) = [(Rasal*(AgZe(i)*0_08333333))F WChang
B2{i) = [(Dasad*{{Ag2y(i)*0.0B333333)+32.2)}; SChangs g te 32.Z fL/s
B3{i) = [{IgZz/l44d}*alphaZ{Ll]};

BEii] = [(Baisd*(Ag3R (i) *0.08333333)])F§

B5{i) = [(massd*{{Ag3y(i)*0.08333333)+3Z.2)}:

BE{1] = [{Ig3z/144)*alphaZ (L]}

BT{i)] = [massd*{hgdn{i)+*0.08333333)])¢

BE{L) = (masad*{|{Agdy(i)*0.08333333)+32.2));

BR{L) = [{Igde/l4d}*alphad (L]}

Bhatzlin = [BlrBIfBS BEyBSrBEEETiHAES] ¢
i9olve the Hatrix

Niarriy = linsclve(AMatrliy, BMatriz] s

ATake Yaloes From Matrix Salwublan
FRlwfi} = ¥Matrix{l,i]:
F2lywiili} = ¥Matrliw{2, 1]
FI2uil)} = KMatelx|{3. 1]}
FI2yil)} = KMatelx|{q.4]1}
Fd3= (i} = XMarelw|5, 1]}
Fdawii} = ¥Matelwia,i];
Fladmii} = ¥Matelw(7,4]:
Flaywii} = ¥Matrix({B,41];
Taall]l = Fdatelx{9,i);

Fax{l) = F2le(i} = Fldx{i);
Fay(l) = F2ly(i} = Fldy{i);

% Draw the Landing Cear Mechaniss to the SoPesn

w2 = [0 e2%coa{el (L)) & Coordimatesa for Link 82

wa = [0 e2%sin{ela{i)i]s

3 = [FX*oad (thI{i)) PlE+Pd*"casithd (L)} 1§ § Coardinates Far link ¥3
¥i = [EXfafin(th3{i}) ely+rd*sinithd {1}
il = [ply Ple+rd*com{thd (L1}]f % Coordipates for limk A4
yd = [ely elyrrd*ain{thd (L1}] 5
plotix2, vyl "b' wd, yd, "'}

citla{"Landing Gear Animation®]f
hald onf & Shows Ciese change an plot

patch{R3, ¥3, g1 ¢
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11/17/1% €:30 P D:\ME 201l Fin...\LlandingGearFinalVerl&.m 5 of

gat{gea, "Fantdize’, 19 wlabal ("WIEX (im.]")f ylabal{'wic¥ (im.1"])3
1§ geldp

aris " agoare

palse 12 iPaviae To make aniBsaticon visible (Ressber to find good Timimg!l

10 Le==l

paasar & Click Enter To Proceds the Landing Gear Animatior

i gos s
sabmlar {3, 1,14
plotit, thZs/OR, "$"] §

Elakbal ("Time, T [(aec) ')}

vilaka] i [ "y geldy
ticle [ "Input v.8. 1 "
submlat {3, 1,

plotit, w3, "B "}

Elakbal ("Time, T [(aec) ')}

vilakba]l (" (W ithomega 2} (radi/s) ") gelidp

dalEslat (3.1, 314
plotit, alphaz, "g"14

Tlabal("Time, T [(aec) '}i

lakakl (" (vithalpha 2} (EadSSTZ1")F geldf

Cigasst

plotipex. peyl r geldy axis("sgaal’
AL (gok, "FoaCSiza"  19)F
tiflé["Four-Har MHechanlsm pler © T

¥lab&li{"F & ¥ [(in.] 1F YlaEwl (P ¢ ¥ [Ln.] | &

£ cpos g
dabglat {21,114
plot (Eh2/OR, th3,/DR, "E'} §

vl (" (it theta 3} [deg)

titl& ("%l ckmta 2] & {nichcheta 4} V.2, {%1cvtheta 2114
daabmlar {3 1, 213

plot {EhE OR, thd D+ 360, b}

wlanal (" (viththeta 3 [(degl "]

W] ] | 4 1Y}y gelidp

£ cpos g

sabmlar {3 1,113

plot (thE  OR, &3, "FY )}

i T W 3F (ead a) ")y gueldy

titla(’ 4 ega &F V.2, thythata I1")
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11/17/18 €:30 PH D:\HE 3011 Fin.

..EL;ndintharF;naL?c:LE.m € of &

sobnlae {2, 1,214

plot {thz /OR, &d

wlabal (i (vithitheta 3 Aeg1 ")

vlaba]l (" (Vi omega 4 Ead/sm1") g geldy
1oy

dabslat {3, 1,114

plot {Thz /OR, alphad, "=') 3

vlabal (" (vivhalpha 3 1f gELds
titla(f{vievalpha 3] B [Wichalplhe 4F V.5
sobplae {2, 1,218

plot {thE /OR, alphad, "bY} g

wlabal (i (vithitheta 3 Aeg1 ")

vlabal (" (vithalpha 4 1 geldy

THURYEG = B Tad)] §

TauhMs = mormiTaa) faget (1+1] )

Wibs = oRes{l, 1)}

f1care
plot{thZ/OR, Tail, "B, ChI D0, TaUAYE"WinEG,

titla [ " Torguse vh.

1 a I I §
St (gea, "FeatSiza’  19)F legend("Taw®. "AVE

Elabal (" (vithitheta 3 Ayl "} ylabel [

3oy
dFobplac {2, 1,114

plot {thE /OR, Fax, "="1f

vlaal (" dhaking Foroe, Fax (1b £i")1F aerid;
titla("Shakling Fayxce vE. [yiocwckata 21"}
sabgplat {3, 1,214

plot {thE /OR, Fay, "B"] f

Elabal (" (it theta 3 deg1 " )

vlabal (" dhaking Poroe, Fay

i '.!.F.':Il., TauhMS*™yund, "g"l1f geldj
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Appendix K: MATLAB Matrix Solver

11/17,/1% 11:55 BFM ‘“wiwhome.ohioc.eduvhomehj...o\M

5]
ju]

rixSolwver.m l of 1

1 clear;
A=[ -181064 b
-4.24 4.24 4._24 o4
B.548 - 446 441 -13.448
- 166 —-a.86 -11._03 - B9k
E = [-0.427&9; 4 - 25529 -2 40z 4; -0.22 - 476 g2 ez w
-0.2042283

X = linsolwe (A, E)
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11717/l 11:56 PM MATLAR Command Window 1 of

A om
Cal ans cheough &

[iTeli]e ] B ] a o C i} i

i 1.0000 o i Ledi]i] o C i} i

4.2400 &.2400 4. 248580 4.2450 i) C 1} 0

i i] L.oboD i} i 030 C i} i

i ] o i Ledi]i] o [i[edile i} i

0 i] £. 580D 1344680 &.4400 13 .44E0 1} 0

0 i] i) a § . 030 C 1.0000 0

i ] o a o [i[edile i} 1.0000

i ] o a 11 .0366 E_BHESE 11.0370 £.HESE

Calass 3

W om
£5.1402
11966032
45.5679
TE.EL103
47.9535
31.1z498

48,6336
124.0498
3345850

¥ om
&5.1403
119.&602
45 5675
TE.EL03
47.49355
31.1z498

aB.E336
134.04494
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